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Abstract

Interpretability has gained an immense amount of popularity over the past decade, mostly
riding the wake of neural networks’ impact on the field of machine learning. The growth in
success and application of neural networks, as well as other blackbox machine learning ap-
proaches, into everyday life has led to a revitalized interest in understanding the blackbox
models making those decisions. In this survey, we give a holistic coverage of the current
state of the interpretability literature, focusing on a detailed coverage for machine learning
tasks and for methods related to feature interactions like SHAP explanations, functional
ANOVA, and the generalized additive model. We achieve this by first mapping out the
many different subareas and paradigms under the larger umbrella of the Interpretability or
XAI literature. We next isolate the scope of this survey and provide a detailed account
of historical developments leading to the modern convergence of interpretability using fea-
ture interactions and interpretability using additive models. Finally, we conclude with a
discussion of specific domains of application and with future directions for interpretability.

Keywords: interpretability, explainability, feature interactions, additive model, XAI,
Shapley value, SHAP, interactions, higher-order interactions

1 Introduction

Blackbox algorithms, developed using a variety of deep learning and machine learning tech-
niques, have quickly become an integral part of daily life in the 21st century as AI applica-
tions continue to propagate throughout scientific, industrial, and commercial applications.
As these machine learning approaches continue to deliver on their promise of accurate
predictions in exchange for big data, the question of how a blackbox algorithm make its de-
cisions or predictions has only grown in importance and frequency. Despite the considerable
attention on the problem of how blackbox models transform large datasets into predictive
insights, there remain no universal solutions to explain the behavior of these models.

Interpretability is the field born out of studying this question of interpreting, explaining,
and understanding the how and the why of predictions made by blackbox models. Although
interpretation has always been in the background of statistical modeling and was even
acknowledged as important in previous decades as model complexity began to grow beyond
linear regression into increasingly opaque nonparametric models, the field would not see
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more dedicated study until mid 2010s. By this time, the incredible power of deep learning
systems had already been demonstrated on audio, vision, and language tasks (Mohamed
et al., 2011; Krizhevsky et al., 2012; Bahdanau et al., 2015), cementing these newest blackbox
models as more capable at learning from raw features than any previous methods.

Given the diversity of blackbox applications and the difficulty of the blackbox question,
there are unsurprisingly a lot of different approaches, cultures, and subfields working on
answering the challenging questions of what to explain, how to explain, when to explain,
etc. Over the past decade, there have been many attempts to standardize, rigorize, unify,
and qualify what the goals, definitions, and techniques of interpretability are. In this work,
we must take the necessary precautions to survey a vast swath of this literature without
completely disregarding other tangentially related approaches in the field of interpretability.
We accomplish this in two main ways. First, we restrict our attention throughout to what
we will broadly call machine learning interpretability. Second, we focus on those methods
which are related to feature interactions, centering our discussion on the duality between
GAM and SHAP.

By first restricting our attention to “machine learning interpretability” instead of “deep
learning interpretability”, we mainly divide along the implicit assumption that the input
features themselves are interpretable. This is sometimes referred to as the divide between
“structured data” (data with interpretable features) and “unstructured data” (data without
interpretable feature representations). This mostly excludes mechanistic interpretability,
outside of classical mechanistic methods like gradient saliency and attention maps which
have generally fallen out of favor. By second focusing our attention on “feature interac-
tions”, we will dedicate most of our time to those methods focusing on feature attribution
and extensions of feature attribution which explore the need for interaction attribution.
We will proceed by first laying out many of the different approaches existing within inter-
pretability before categorizing them amongst three major categories. The topic of feature
interactions which we discuss in more detail will be centered around the ‘pillar’ of addi-
tive interpretability revolving around the duality between GAM interpretations and SHAP
explanations.

In Section 2, we begin by providing a very high-level overview of the field of inter-
pretability and some of the many various techniques used throughout the literature. By
the end of the section we provide a map of the current interpretability landscape and point
to exactly where we plan to focus our attention for the rest of the survey. In Section 3, we
go into great detail on the explainability approach of feature interactions. In Section 4, we
go into great detail on the interpretability approach of additive models. In Section ??, we
detail the many applications of feature interaction approaches across vision, language, time
series, graphs, and the natural sciences. Finally, in Section ??, we conclude with many of
the open problems and active research areas both within the subfield of interactions but
also in connection with the wider field of interpretability.

2 The Current Map of Interpretability

Given that the goal of interpretability (‘to understand the black box’) is extremely broad,
the methods which researchers have developed to tackle the problem have become equally
broad. We use Section 2 to provide a high-level map of the large and diverse space of
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interpretability and related fields before clarifying which ‘part of the map’ we will explore
in greatest detail throughout the course of this survey.

Figure 1: A high-level view of the umbrella of Interpretability research. There is a large
line in the sand to distinguish the subgoals of interpretability and explainability.
Fields like mechanistic interpretability fall entirely under the umbrella of inter-
pretability, whereas fields like deep learning theory and causality only partially
intersect with the goals of interpretability.

2.1 Areas Related to Interpretability

Explainability v. Interpretability We begin by reminding of the key distinction within
interpretability research which is rarely known outside of the field. That is the distinction
between explanation approaches and interpretation approaches. Of course in natural lan-
guage, these two words are nearly synonymous.

In Figure 1, we depict the larger field of Interpretability as the umbrella field which covers
many approaches related to interpreting and understanding blackbox models. Underneath
the umbrella, we see both interpretability and explainability as subcategories. In this case,
interpretability is used to mean intrinsically interpretable glassbox models, whereas ex-
plainability is used to mean post-hoc explanations of blackbox models. Although seemingly
innocuous at first glance, this distinguishment turns out to be a critical motive underly-
ing interpretability research. We will commonly use interpretability both for the umbrella
class and the low-level meaning. Although we will try here to avoid saying explainability
to mean the umbrella class, it is also common in the literature to use explainability as the
umbrella class, especially in well-established phrases like XAI (meaning eXplainable Artifi-
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cial Intelligence). Lastly, the field of explainability also takes on a third meaning regarding
the psychological and social aspects of explaining (Miller, 2018), which can be necessary to
apply in both interpretability and explainability.

Deep Learning Theory v. Interpretability As can be seen in Figure 2, the questions
of deep learning interpretability and deep learning theory are very intimately related. Nev-
ertheless, there are some very key nuances between the goals and approaches of the two
which mostly separate them. In particular, deep learning theory mostly deals with under-
standing how neural networks learn what they learn, usually beginning from first principles
and mathematically studying the effects of gradient descent algorithms. In contrast, (deep
learning) interpretability instead often deals with understanding what a particular neural
network has learned. Typically, this is done by fixing a trained model and applying a variety
of counterfactual perturbations in order to ascertain some additional information about the
blackbox system.

Both confusingly and excitingly, there are many details in the specifics of how these
what/ why/ how questions are asked within different subfields which impact the flavor of
the research questions. For instance, traditional interpretability methods are often con-
cerned with understanding why a network has made its prediction, usually in the form
of understanding which input features ‘contributed’ to the output prediction. In contrast,
mechanistic interpretability methods are more concerned with understanding how a network
has made its prediction, often in the form of understanding which substructures inside the
neural network ‘control’ the final prediction. For this reason, one of the main identifiers
between traditional interpretability and mechanistic interpretability is the former’s goal of
model agnostic understanding and the latter’s goal of model specificity.

Beyond this distinction, there are many other aspects of the what/ why/ how questions
which seriously affect the goal of interpretability and the type of interpretability used. For
example, an additional subfield of interpretability is the literature focusing on gaining causal
insights through interpretability (related to the recent push for actionable interpretability).
Here, the goal is to distill information from the model all the way back to the real-world,
gaining some causal knowledge about the real world. It is worth noting that this is distinct
from the causal language which is used inside of mechanistic interpretability. There, one first
assumes that the studied network is the ‘true process’ and then uses tools from causality to
causally explains the behavior. In contrast, causal interpretability uses the explanation of
model behavior and questions whether the true process of the world (outside of the model)
is explained in the same way. These distinctions between ‘true-to-the-data’ and ‘true-to-
the-model’ have been the source of endless confusion and of many unnecessary debates on
the topic (Sundararajan and Najmi, 2020; Chen et al., 2020; Frye et al., 2021).

Causality v. Interpretability Another key clarification worth getting into is the dis-
tinction between causal insights and interpretable insights, especially given the importance
of interpretability for causality and the importance of causality for interpretability. This
somewhat subtle nuance is only made worse by people’s natural inclination to treat expla-
nations as causal as well as initiatives from the mechanistic interpretability community to
explain models exclusively using causal language (Geiger et al., 2025).

The unfortunate truth, however, is that causal claims requires causal reasoning and
causal assumptions, which are broadly lacking from the interpretability literature. Although
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Figure 2: Deep Learning Theory vs. Deep Learning Interpretability

there have been attempts to directly incorporate causal reasoning into feature explainabil-
ity, it is often a careful balance between making too many causal assumptions (Jung et al.,
2022; Biparva and Materassi, 2024; Parafita et al., 2025) and making unrealistic assump-
tions (Janzing et al., 2020; Heskes et al., 2020). The vast majority of interpretability is
still on typical ‘X to Y’ problems of regression or classification; whereas causal insights
requires understanding the structure between X variables, and sometimes even X and Y in
a joint fashion. Moreover, if we have a perfect causal model of the variables, this precludes
needing a blackbox regressor in the first place, begging the question of why would even
need interpretability in the first place. A satisfactory middle ground here still seems to be
absent from the literature at the present. Accordingly, it is important for the practitioner
to always take extra precautions when jumping from interpretable insights to causal claims.

2.2 A Taxonomy of Interpretability Approaches

Over the years, there have been many developments in interpretability methods, leading to
a constantly expanding toolkit for understanding model behavior. Despite the constantly
evolving landscape of interpretability, there have also been many good summaries of the
available interpretability methods for explaining blackbox models, each making their own
choices for the taxonomization of the available methods. One of the earliest syntheses of
interpretability methods, the ‘Interpretability Book’ (Molnar, 2019), takes there to be the
following classes of methods:

1. Intrinsically Interpretable Methods (GAM-type methods and rule-based methods)
2. Model-agnostic Methods (PDP, ICE, ALE; feature attribution, feature interaction,

global surrogate, local surrogate, LIME, SHAP)
3. Example-based Approaches (counterfactual examples, adversarial examples, proto-

types/ criticisms, influential instances)
4. Deep Learning Specific Approaches (feature visualization)

The latest version (Molnar, 2025) instead takes there to be the following classes of methods:
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1. Intrinsically Interpretable Methods (GAM-type methods and rule-based methods)
2. Local XAI (ICE; LIME, counterfactual examples, anchors, SHAP)
3. Global XAI (PDP, ALE; feature interaction, functional decomposition, leave-one-out,

surrogate models, prototypes and criticisms)
4. Deep Learning Methods (learned features; saliency maps; detecting concepts; adver-

sarial examples; influential examples)

Other more recent surveys take a broadly similar approach to categorizing the many
different classes of interpretability methods. Zhang et al. (2021) suggests four main ex-
planation types: example-based, attribution-based, hidden semantics, and rule-based. Ji
et al. (2025) suggests five main styles: attribution-based, function-based, concept-based,
prototype-based, and rule-based self-interpretation.

Herein, we consider there to be three main styles of explanation: concept-based, rule-
based, and additive-based. In Figure 3, we depict how many classical interpretability meth-
ods fall into these three categories. We find that unlike previous taxonomizations, there is
a single interpretable model which is a quintessential representative of the interpretation
style, depicted at the base of each pillar. The additive pillar is supported by the inter-
pretable additive model. The reasoning pillar is supported by the interpretable decision
tree. Finally, the concept pillar is supported by the k-NN algorithm, which is often granted
the same status as an interpretable model.

2.3 Mechanistic?

As alluded to before, we will mainly ignore approaches from mechanistic interpretability in
favor of more enduring approaches to interpretability; however, we still find it important to
review some of the major developments and techniques coming from this subfield.

Mechanistic approaches to neural network interpretability have existed just as long as
neural networks themselves. Beginning in computer vision, one of the simplest early meth-
ods was gradient saliency (Simonyan et al., 2014), originally applied to those deep convolu-
tional networks which were able to achieve stunning accuracy on the ImageNet challenge.
This method simply takes the gradient of the class logit with respect to the input pixels.
Later follow-ups like Layer-wise Relevance Propagation (LRP) (Bach et al., 2015), Grad-
CAM (Selvaraju et al., 2017), DeepLIFT (Shrikumar et al., 2017), and Integrated Gradients
(IG) (Sundararajan et al., 2017) provided extensions to the simple gradient approach which
gave it increased stability or convenient properties. Unfortunately, later work (Adebayo
et al., 2018) called into question how useful these saliency maps, providing sanity checks
showing most saliency methods provided little information beyond edge detection and most
likely hijacks our human intuition to make us researchers feel as though we were under-
standing the predictions of the neural networks. Despite these major limitations, it often
remains the dirty go-to throughout many areas of computer vision research.

Another key mechanistic explanation approach is the method of feature visualization
(Dumitru Erhan and Vincent, 2009). Originating again in computer vision research and
even earlier than the simple gradient saliency approach, this approach simply finds the
solution to a maximization problem for each of the class labels, usually maximizing the
activation through a gradient descent algorithm. Later interpretation works (Simonyan
et al., 2014) would also include this approach; however, this direction picked up greater
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Figure 3: Taxonomization of the Classical Approaches to Interpretability

steam after Google’s DeepDream visualization approach (Mordvintsev et al., 2015) on the
state-of-the-art Inception network (Szegedy et al., 2015). Later works like (Olah et al.,
2017) and (Bau et al., 2017) would continue to build towards a larger-scale analysis of entire
convolutional networks (and ultimately form the basis for modern mechanstic approaches).

The final method in the set of long-standing mechanistic interpretability approaches
is the attention mechanism (Dzmitry Bahdanau, 2015), coming directly from the neural
architecture in its application to machine translation in natural language. Its usage as an
interpretability approach eventually became widespread enough that a work summarizing
its limitations called “Attention is not Explanation” (Jain and Wallace, 2019) was eventually
published. This led to a retort called “Attention is not not Explanation” (Wiegreffe and
Pinter, 2019) which claimed attention was at least doing something, as well as works like
Attention Flow (Abnar and Zuidema, 2020) which instead tried to correct some of the
shortcomings of attention. Although attention is also commonly used throughout NLP
applications as a first approximation of importance, concerns regarding the faithfulness of
such explanations persist into the current day (Lyu et al., 2024).

More modern versions of mechanistic interpretability (also MI or mech interp) continue
further down the path trailblazed by Chris Olah and coauthors, mainly through the ap-
proaches of feature visualization (Carter et al., 2019b; Schubert et al., 2020) and circuit
decomposition (Olah et al., 2020). This push has been integrated with many call-to-actions
motivated by concerns surrounding AI safety, and has continued further after the creation
of companies like Anthropic specifically with these goals and values in mind. This has
led to the explosive growth of mechanistic interpretability as a subfield in recent years,
focusing on a wide array of approaches trying to understand the feature representations of
deep neural networks and trying to understand the algorithmic computations run by deep
neural networks, including: linear probes (Alain and Bengio, 2017), nonlinear probes (Li
et al., 2023), sparse autoencoders (Huben et al., 2024), sparse circuits (Marks et al., 2025),
causal mediation analysis (Vig et al., 2020), model editing (Meng et al., 2022), and causal
abstraction (Geiger et al., 2025). As was already discussed, this is often done in a manner
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which is both empirical and applied, distinguishing it from the sometimes similar works in
deep learning theory.

2.4 Pillars of Interpretability

We now discuss the three pillars of interpretability as depicted in Figure 3 and how they are
representative of interpretability research which we will herein call traditional interpretability
to better distinguish it’s more enduring spirit from mechanistic interpretability’s more recent
push. Each of these pillars are supported at the base by an intrinsically interpretable model,
and at the top of each pillar we list many classical explainability approaches which are
related to that interpretability style. Supported by the generalized additive model (GAM),
we have the additive pillar. Supported by the decision tree model, we have the reasoning
pillar. Supported by the k-nearest neighbor model (k-NN), we have the concept pillar.

There is near complete consensus throughout the interpretability community that ad-
ditive models and decision trees are interpretable models (of course to varying degrees in
various situations), so many readers will be comfortable with these choices for the first two
pillars. It is much less standard to make the same claim that the k-NN model is inter-
pretable; however, in contexts like data attribution, it is clearly one of the simplest possible
models for understanding the influence of individual data points. We will soon further
justify this decision.

The Additive Pillar is centered around the generalized additive model (Hastie and Tib-
shirani, 1990; Lou et al., 2012) which additively incorporates the influences of individual
features into a final prediction. These separate contributions are implicitly understood to
independently contribute towards the final prediction, allowing them to be interpreted indi-
vidually. Extensions to models with pairwise interactions (Lou et al., 2013) or higher-order
interactions (Enouen and Liu, 2022) provide a spectrum of gradually increasing complexity
which can ultimately represent any function, at the expense of deteriorated interpretability.

On the explainability side, feature attribution approaches (Smilkov et al., 2017; Sun-
dararajan et al., 2017) primarily use the same feature-based reasoning as generalized addi-
tive models. Although beginning in the gradient saliency literature measuring local sensi-
tivity, progress slowly developed towards smoother, model-agnostic measurements of local
influence like SmoothGrad (Smilkov et al., 2017) and Integrated Gradients (IG) (Sundarara-
jan et al., 2017). Further developments into feature perturbation approaches (Breiman,
2001a; Aaron Fisher, 2019; Hooker and Mentch, 2019) and feature removal approaches (Lei
et al., 2018; Covert et al., 2021) helped standardize progress. Specific cases like the SHAP
approach (Lundberg and Lee, 2017) greatly unified interest in the field, now known to be
directly dual to GAM interpretation (Bordt and von Luxburg, 2023; Enouen and Liu, 2025).

One of the earliest interpretability approaches, the partial dependence plot (PDP)
(Friedman, 2001), works on the exact same intuition as the shape functions of the ad-
ditive model, marginalizing the effect of an individual feature on the blackbox model across
the entire dataset. Later work called the individual conditional expectation (ICE) (Gold-
stein et al., 2015) instead considered the individual curves of each data point together in a
single plot. It is worth noting how these two approaches, explicitly and implicitly, consider
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the marginal distribution over the input features which is not necessarily a good representa-
tion of the underlying distribution. Instead it is often necessary to consider the conditional
distribution which is induced by the underlying distribution when conditioning on a single
feature. Although these conditionally marginalized plots are difficult to compute, the accu-
mulated local effects (ALE) plot (Apley and Zhu, 2020) are an alternative which samples
from alternative samples which are ‘nearby’ to the data sample according to a prescribed
distribution.

The Logical Pillar is focused on the logical, mechanical steps taken to arrive at a final
decision. Even simpler than decision trees (Hastie et al., 2001) is the decision list (Chen and
Rudin, 2018) which allows for a deterministic list of decisions to be sequentially followed
until a particular condition is met. The decision tree instead allows for a flow chart to
be followed depending on the previous set of logical conditions. Taking this complexity
further, the decision circuit (Oliver, 1993; Kohavi, 1994; Kohavi and Li, 1995; Darwiche
and Marquis, 2002) allows for even more compact representation at the expense of a more
tightly entangled reasoning process.

Although practical extensions to decision trees have mainly been the additive ensemble
of the random forest (Breiman, 2001a), it is folk knowledge that this immediately destroys
the interpretability. Broadly, this seems to be due to the ‘incompatibility’ of mixing additive
interpretability and logical interpretability in this particular way. Alternatives to extend
the complexity of the decision process while remaining interpretable have instead consid-
ered a large set of near-optimal decision trees called the Rashomon set (Xin et al., 2022).
These small decision trees are then designed to interpreted individually and then chosen
based on alternative objectives like fairness, robustness, or simply preference by domain
experts. RuleFit (Friedman and Popescu, 2008) is an additive combination of rules which
uses sparsity to ensure that few rules will be added together, allowing each individual rule
to still be interpreted.

On the explanation side, the sufficient input subset (SIS) method (Carter et al., 2019a)
aligns heavily with the logical reasoning of decision processes, providing the input features
which were sufficient for the model to be certain about its decision. The closely related
notion of necessity (Darwiche and Hirth, 2020; Watson et al., 2022) describes which input
features cannot be changed to maintain the same prediction. These logic-based notions of
explanation often have formal origins coming from causal reasoning (Pearl, 2009; Halpern,
2016), abductive reasoning (Peirce, 1903; Josephson and Josephson, 1994), and earlier.

The closely related approach of counterfactual explanations (Wachter et al., 2017) pro-
poses alternative feature values which are sufficient to change the prediction or decision.
When focusing on the features which were changed to come to the new prediction, these can
be related to the notions of sufficiency and necessity (Kommiya Mothilal et al., 2021); how-
ever, it is also common to consider the counterfactual as its own data sample, putting the
reasoning closer to prototype-based reasoning. The method of LIME (Ribeiro et al., 2016)
uses a local surrogate around a data point, typically either a decision tree or linear model,
which then applies the additive reasoning or logical reasoning to a local region around the
data point. Anchors (Ribeiro et al., 2018) provide local logical explanations in a similar
fashion using a different algorithm.
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The Conceptual Pillar is about the construction of new features or concepts, allowing
for greater abstraction and simpler higher-level reasoning. Interpretable works like Proto-
typical Part Network (ProtoPNet) (Chen et al., 2019) and the Concept Bottleneck Model
(CBM) (Koh et al., 2020) extend the reasoning style of the k-NN which makes determina-
tions based on similarity with previously seen examples.

Previous survey hierarchies (Ji et al., 2025) have argued that concept-based interpretabil-
ity and prototype-based interpretability are fundamentally different categories. Although
we agree that there are key stylistic differences between concept approaches and pro-
totype approaches, we believe that their overall reasoning styles are fundamentally the
same. Although k-NN models and prototype-based regression make predictions directly
from distance-based similarity to existing samples, more general CBMs extend the simi-
larity metric across an array of concepts and accordingly complexify the final prediction
step.

On the side of explanation, we begin with the most obvious concept-based explainability
approach. TCAV (Kim et al., 2018) uses a set of training data samples which are labeled as
obeying or disobeying a concept to be able to find a vector direction within the latent space
which points in the direction of the concept. As previously mentioned, methods like LIME
(Ribeiro et al., 2016) and Anchors (Ribeiro et al., 2018) which take a local perspective
in a small region around the data point are partially a prototype-style explanation. Even
moreso are direct prototype-based explanations (?) which find explanatory samples nearby
in input space or latent space, and counterfactual explanations (Wachter et al., 2017) which
find explanatory samples which are nearby but with different predictions. Moreover, this
goal of finding an appropriate set of concepts is tangentially related to compressibility
(Tishby et al., 2000; Hutter, 2005) and sparse coding (Donoho, 2006a; Rubinstein et al.,
2010).

Figure 4: Additional Axes of an Interpretability Taxonomy.

2.5 Further Jargon and Taxonomical Aspects

Finally, for completeness sake, we will briefly go over some other taxonomical aspects of
the interpretability literature before moving into surveying the main topics of additive
explainability and additive interpretability.
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It is worth noting that the majority of interpretability work takes the perspective that
the goal is to explain a trained blackbox model as depicted in the right-hand side of Figure
2, and this accordingly frames a lot of the discussion about and previous taxonomies of
the field; however, there are emerging areas considering data valuation (Ghorbani and Zou,
2019; Jia et al., 2019b) or even the entire statistical inference (Bordt et al., 2025). One of
the main taxonomizations of explainability methods is whether or not they are local, semi-
local, or global (Zhang et al., 2021). This refers to whether an XAI method is supposed to
explain the behavior of the model only in a local area near the data point, in a larger region
around the data point, or across the entire input manifold. It is worth reminding that there
is a minor distinction between a global explanation which uses an interpretable model as a
surrogate of a blackbox model and a global interpretation of an interpretable model trained
on the same data. This local v. global question can be seen as a special case (although the
most common case) of the larger question: how much of the model behavior is covered by
my explanation method? Further examples of this question include: am I explaining this
behavior only on the training distribution? am I explaining this behavior only for a certain
subtask?

Another key distinction is between black-box explanations and white-box explanations.
Note that this is distinct from blackbox v. glassbox which refers to the lack of trans-
parency in these models from an interpretability perspective, whereas black box v. white
box refers to the level of access to the actual model mechanisms, regardless of the com-
plexity in interpreting those mechanisms. Historically, there was a push to move away from
early gradient-based and attention-based methods (gray box) towards model-agnostic inter-
pretability methods which could be applied to any blackbox model; however, there has also
been the more recent push methods specifically designed for understanding neural networks
and transformers given their widespread successes. Obviously the level of access restricts
the lowest level of abstraction which is possible; however, researchers often choose a higher
level of abstraction than available. Immediately, one is then faced with the questions about
what counterfactual queries are possible at the level of feature removal, data point removal,
model type change, mechanism perturbation, etc. These are critical questions related to
the explanation target and explanation purpose.

Finally, there are the aspects of the type of explanation, which we taxonomized in much
greater detail in the previous sections, and can also be very much entangled with these
other questions about model type and behavior coverage. Also worth mentioning is the
model’s task (decision-making, prediction-making, or generative) which can be seen as a
subquestion of the first question on the target of the explanation. Lastly, we have the all-
important question about the downstream purpose of the explanation itself. Although this
does not always make its way into the papers creating XAI methods, it is an undeniable
part of XAI application, and thus must be considered as part of how to interpret and
integrate the explanation. This again gets into the challenging questions of causality, social
explanation, and broader context (Miller, 2018).
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3 Additive Explainability (Feature Interactions)

In this section we go into great detail on the study of feature interactions and related additive
explainability approaches. If you want to know more about applications and are not already
sold on the importance of feature interactions, you should probably skip this section for now.
You can return later to the relevant topics as necessary. If you are interested in feature
interactions, but not deeply invested, I recommend skimming through the sections giving
historical details and focusing on the key connections highlighted between different areas of
the literature.

3.1 A History of Feature Interaction Detection

In order to have a detailed understanding of the history of feature interactions, we must
begin at nearly the very beginning of statistics and start by first discussing the Design of
Experiments (DOE).

First DOE Wave (Agricultural) A discussion of the history of feature interactions
must undoubtedly start with Ronald A. Fisher’s work on the analysis of variance (ANOVA)
in 1925 (Fisher, 1925) which built upon decades of agricultural data collected by John
Lawes and Joseph Gilbert at the Rothamsted Experimental Station, originally established
in 1843. This research was further pushed by Frank Yates of the same institution, furthering
the work on ANOVA (Yates, 1935). A major clarification on the assumptions which were
required for this approach were later provided in 1947 by Churchill Eisenhart (Eisenhart,
1947). ANOVA was then developed further by John W. Tukey who in 1949 helped isolate
the key property of a feature interaction as the non-additivity between the two independent
variables of the contingency table (Tukey, 1949). Despite the focus on interactions, this was
still a time where running experiments was extremely costly and accordingly higher-order
feature interactions (interactions of three or more variables) were often completely ignored
or assumed to be zero in order to minimize the number of required experiments. Further
developments continued on factorial designs such as those taken by M. B. Wilk in 1955 to
extend to the generalized randomized block design (Wilk, 1955) and by B. V. Shah in 1960
for balanced factorial experiments (Shah, 1960).

Second DOE Wave (Industrial) Around this time, the experimental design literature
saw a second revitalization with G. E. P. Box and K. B. Wilson’s work on applying sim-
ilar ideas to industrial applications (Box and Wilson, 1951). It is here where we see the
clear introduction of continuous variables and a notation much more similar to the modern
approaches. Specifically, a set of experimental variables, which are measurable and control-
lable, are chosen and an experiment is ‘run’, leading to a functional response surface in the
observed outcome variable, often with some potential error or confounding due to factors
beyond the control of the experimenter. Despite these many modernizations, the focus
remained on minimizing the required number of costly experiments and discarding higher-
order effects. Later improvements by Box and Hunter (Box and Hunter, 1957) and Box and
Behnken (Box and Behnken, 1960) continued to refine the response surface approach, still
focusing on optimizing performance with minimal experiments. Developments continued
with the treatment of experiments with mixtures like in the production of rubber or alloys
(Scheffe, 1958) as well as extended to more complex time-confounded errors (Geisser and
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Greenhouse, 1958; Huynh and Feldt, 1970). Industrial applications in the post-war era ex-
panded over the next decades beyond chemistry into tool-life, foodstuffs, biology, ecology,
and manufacturing (Myers et al., 1989). This later evolved into the ‘quality assurance’
era, mimicking the Japanese industrial boom which used statistical methods pioneered by
researchers like Taguchi (Taguchi, 1986), and ultimately evolving into the Total Quality
Management (TQM) and Continuous Quality Improvement (CQI) approaches which came
to define American industrial management by the end of the century.

Third DOE Wave (Informational) Although the industrial experimentation era would
go on to become majorly corporatized, the design of experiments would see two spiritual
successors. A spiritual successor to the focus on experimental design is most likely the
modern research of AB experimental design, as used liberally by tech companies to quickly
gain insight into user behavior (Quin et al., 2024). With the digitization of many user
experiences, large-scale tech companies are able to receive near-instantaneous feedback,
both direct and indirect, allowing for rapid quality improvements in distributed software.
Further discussion on this direction will mostly be out of scope for this survey. A spiritual
successor to the focus on the response surface methodology is better represented by the
literature on Sensitivity Analysis (SA). Also fueled by the modern digitization, or more
specifically the proliferation of computerized simulation, the modern researcher may have
access to a much greater number of experiment runs. Earlier works like (McKay et al.,
1979) and (Sacks et al., 1989) set the stage for computer-based experiments, and sensitivity
analysis ultimately developed around the modern techniques centered on Sobol’ analysis
(Sobol’, 1990; Chan et al., 1997; Saltelli et al., 2000; Santner et al., 2003). We will discuss
this direction of sensitivity analysis in much greater detail in Sections 3.2.7 and 4.5.3.

Feature Interaction Detection (Decision Trees) During this time, the precursors to
the modern decision tree like Automatic Interaction Detection (AID) (Belson, 1959; Mor-
gan and Sonquist, 1963) and the Chi-squared Automatic Interaction Detection (CHAID)
(Kass, 1980) were already under development. These methods were novel approaches for
determining how to best combine features to interact within a decision tree. These ap-
proaches would later culminate into the famous CART algorithm (Breiman et al., 1984)
and ultimately modern decision trees and random forests (Ho, 1995; Breiman, 2001a). By
the turn of the century, it was already clear that the major interest in feature interactions
would be in the context of accurate prediction models and machine learning.

Feature Interaction Detection (Premodern) Although many works at this time
would already use the occasional interaction term (most often polynomial cross terms or ten-
sor product splines), the detection of more general feature interactions remained uncommon
(Aiken et al., 1991). Some preliminary works like Ai and Norton (2003) proposed extracting
interactions from logit and probit models via mixed partial derivatives and Gevrey et al.
(2006) followed up by proposing mixed partial derivatives to extract interactions from shal-
low neural networks. An important change in perspective occurred after two nearly concur-
rent papers showed how to leverage the powerful decision tree models to detect meaningful
interactions, with Friedman and Popescu (2008) and Sorokina et al. (2008) both restricting
the features to be included in the trees of a random forest and a similar statistic to measure
the strength of an interaction between two or more features. Of major importance was the
setup which did not necessarily require the use of a specific choice of ML model, enabling the
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use of the powerful random forest model. Later works provided clarification of the sparse
selection problem and the strong heredity principle (Bien et al., 2013) as well as formulating
the screening problem for high-dimensional statistics (Hao and Zhang, 2014a). These devel-
opments continue into the present day; however, they become increasingly intertwined with
related areas like explainability, sensitivity analysis, and additive models. Accordingly, we
will pause in this timeline to introduce these other research areas, first focusing on blackbox
explanations, which later becomes almost indistinguishable from interaction detection itself.

Additional details on the topics of experimental design and feature interaction detection
are available in the surveys Dean et al. (2015), Rosenberger (2019), and Tsang et al. (2021).
We will pick up our discussion on interactions in Section 3.2.6 after the introduction of
interaction-based generalizations of the Shapley value.

3.2 A History of the Shapley Value (Additive Explanations)

The Shapley value itself was introduced in 1953 by Lloyd Shapley (Shapley, 1953), devised to
equally distribute the rewards of some collaborative project amongst its constituent players.
It was a fundamental concept in collaborative game theory, inspiring many extensions we
will later discuss. It was brought into popularity for machine learning interpretability
literature much later in 2017 (Lundberg and Lee, 2017). Generally, we will use the Shapley
value to refer to the game-theoretic concept and SHAP to refer to the ML explainability
concept; however, we will occasionally use Shapley to describe the latter (e.g. conditional
Shapley). Although the Shapley value does not focus on interactions, either in its original
conception or its ML revitalization, it has become a centerpiece or a rallying cry for these
research directions which focus on interpretable features, including the study of feature
interactions. Accordingly, we will center our discussion in the next sections as if Shapley
were the unifying force behind all of these areas, even if for nearly all these areas, Shapley
played no part in the origin of the field.

3.2.1 The Shapley Value

The Shapley value was designed to solve the problem of fair attribution amongst a set of d
players under a fixed value function, v. This function (originally assumed to be superaddi-
tive in the spirit of cooperation) maps a coalition of players to the value generated by their
collaborative efforts, v : P([d]) → R where P([d]) denotes the power set of [d] := {1, . . . , d}.
That is, for each coalition (subset) of players S ⊆ [d], we write their combined value as
v(S).

In Shapley’s original formulation of his solution concept, he used three axioms: the sym-
metry axiom, the carrier axiom, and the additivity axiom. These are now more commonly
decomposed into four axioms, dividing the carrier axiom into the dummy axiom and the
efficiency axiom. We write the four Shapley axioms in the operator notation as follows:

1. Dummy If [δi ◦ v](S) = c ∈ R for all S, then [ϕi ◦ v] = c.

2. Symmetry ϕπ(i) ◦ (π ◦ v) = ϕi ◦ v, ∀π ∈ Πd

3. Efficiency
∑

i∈[d](ϕi ◦ v) = v([d]) − v(∅)

4. Additivity ϕ ◦ (v + w) = ϕ ◦ v + ϕ ◦ w
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where we define [δi ◦v](S) := v(S+ i)−v(S− i) as the difference in value of a coalition with
and without player i, π ∈ Πd is a permutation of d elements, (π◦v) is the game where player
i is relabelled as player π(i), and (v +w) is the game defined as (v +w)(S) := v(S) +w(S).

Theorem 1. (Shapley, 1953) There is a unique solution concept obeying these axioms,
now called the Shapley value, obeying the equation below.

ϕSh
i (v) :=

∑
S⊆([d]−i)

1

d

(
(d− 1)

|S|

)−1

·
[
v(S + i) − v(S)

]
(1)

Although this is a closed form directly in terms of the value function, it obscures the
nature of Shapley’s solution. Instead, let us first decompose the value function into its
composite ‘unanimity games’, also called the synergy functions, the purified value function,
the Mobius function, or the discrete derivative.

ṽ(S) :=
∑
T⊆S

(−1)|S|−|T | v(T ) (2)

We may then write the Shapley value in a form which exactly describes its approach. The
Shapley value takes the unique synergies amongst each set of players and divides it equally
amongst all those players.

ϕSh
i (v) :=

∑
S∋i

ṽ(S)

|S|
(3)

Another relevant definition is the Shapley value in its permutation form. Here it becomes
very clear how the Shapley value obeys both its symmetry and its efficiency axioms. Unlike
what is sometimes erroneously claimed, this was not the original definition and was likely
solidified out of collaboration with Martin Shubik on the Shapley variant designed for voting
games (Shapley and Shubik, 1954), see discussions below. The Shapley can also be defined
as:

ϕSh
i (v) :=

1

d!

∑
π∈Πd

[
v(Sπ

i + i) − v(Sπ
i )
]

(4)

where the sum is taken over all permutations/ orderings of the players, and the set Sπ
i is the

set of predecessors of i given the permutation π, in other words Sπ
i := {j ∈ [d] : π(j) < π(i)}.

This definition is often used as the basis for Monte carlo sampling via random permutations.
Another important formula is the realization that the Shapley value is the average over

marginal contributions where all sizes of subsets are weighed equally. This is easy imagine
given the permutation definition, and can be written as:

ϕSh
i (v) :=

d−1∑
k=0

1

d
·

∑
S⊆([d]−i)
s.t. |S|=k

(d−1
k )−1 ·

[
v(S + i) − v(S)

]
(5)

where k is ‘uniformly distributed’ over the set {0, . . . , d−1} and S is ‘uniformly distributed’
over subsets of size k. From this definition it is clearest to see that we may equally define
this over S where {i} ⊆ S ⊆ [d] or ∅ ⊆ S ⊆ [d] instead of the originanl ∅ ⊆ S ⊆ ([d] − i)
(with the appropriate adjustments).
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Finally, the last important definition is the variational definition, which defines the
Shapley value as the solution to a minimization problem. This alternate definition was
discovered much later than the original formulation of the Shapley value.

Theorem 2. (Charnes et al., 1988) The Shapley value can be written as:

ϕSh := argmin
ϕ∈Rd

{ ∑
S⊆[d]

m(|S|) ·
[
v(S) − ϕ∅ −

∑
i∈S

ϕi

]2}
(6)

s.t. v(∅) = ϕ∅ and v([d]) = ϕ∅ +

d∑
i=1

ϕi

where m(s) is taken equal to m(s) =
(
d−2
s−1

)−1
.

In other words, we can define the Shapley value as the least squares solution to the
‘additive approximation’ of the true value function, under some specific measure now often
called the Shapley kernel, sometimes Shapley kernel measure or distribution.

It is equivalent to scale the measure m(s) by any constant without changing the op-
timization problem. Although the preferred measure might be the one normalized to a
probability measure (to more easily enable random sampling of S), the normalizing con-
stant is not available in a simple closed form. Nevertheless, it is now more popular to use
a measure closer to the one independently discovered by Lundberg decades later in the
SHAP paper (Lundberg and Lee, 2017). This is the measure defined as m(s) = d−1

(ds)·s·(d−s)

or equally m(s) = 1
d

(
d−2
s−1

)−1
. A strong reason to prefer the former is that it reminds us that

when s = 0 or s = d, the measure is implicitly infinite, corresponding to the constraints of
the system. A reason to prefer m(s) = d−1

(ds)·s·(d−s)
over m(s) = 1

(ds)·s·(d−s)
is the fact that the

total measure of the former only grows logarithmically, rather than quickly decaying almost
linearly. Nevertheless, the latter is probably the simplest equivalent measure with these
nice properties. Let us now move on to discuss the ML application of Shapley by Lundberg
and Lee (2017) in more detail, including how they leveraged this variational formulation.

3.2.2 The SHAP Value

The SHAP value, introduced in 2017 by Lundberg and Lee (Lundberg and Lee, 2017),
was an effort to unify several recent explainability methods under the roof of ‘additive
explanations’ and then provide an axiomatic characterization of their introduced additive
explanation, the SHAP value. It is important to note that this was around the dawn of
the push for ‘model-agnostic’ approaches, meaning they treated the ML model entirely as
a black box after abstracting how to remove the features from the model. This would allow
them to directly import the set functions from the original Shapley and would continue to
influence subsequent developments, not least of which can be seen in the modern notation
used throughout this survey.

Definition 1. (Additive Explanation) The umbrella class which was studied by Lund-
berg and Lee (2017) was the additive explanation, defined as:

w(S) := ϕ∅ +
d∑

i=1

I(i ∈ S) · ϕi (7)
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The originally proposed axioms were in a now-outdated notation which is related to the
baseline method of feature removal. We write them in an updated notation:

1. Local Accuracy v([d]) =
∑d

i=1 ϕi and v(∅) = ϕ∅

2. Missingness v(S + i) − v(S) = 0 for all S =⇒ ϕi = 0.

3. Consistency v(S + i) − v(S) ≥ v′(S + i) − v′(S) for all S =⇒ ϕi ≥ ϕ′
i.

Theorem 3. (Lundberg and Lee, 2017) The only additive explainer of the form w(S) :=
ϕ∅ +

∑d
i=1 I(i ∈ S) · ϕi which obeys Local Accuracy, Missingness, and Consistency is the

Shapley value.

Although these alternative automatizations of the Shapley value were already known
from the literature below on cooperative game theory, the critical development was to bring
these notions into the language of blackbox (i.e. model-agnostic) explainability. It is worth
noting that the outdated missingness condition had the different requirement that φi = 0
whenever the feature value xi = 0, where 0 was taken as the baseline value. We reinterpret
this meaning that no change would occur for the value function.

Again, much of the original language was limited to the then popular baseline removal
method; however, the paper alluded to more general perturbations. In particular, the paper
writes:

v(S) := E[f(XS , X−S)|XS = xs] = Ep(X−S |xs)

[
f(xS , X−S)

]
(8)

≈ Ep(X−S)

[
f(xS , X−S)

]
(9)

≈ f(xS ,Ep(X−S)

[
X−S

]
) (10)

where the first line (Equation 8) corresponds to Equations 9 and 10 of (Lundberg and Lee,
2017). The second line (Equation 9) corresponds to Equation 11, achieved by assuming that
the input features are independent. The third line (Equation 10) corresponds to Equation
12, achieved by assuming the function is linear in the features. As a reminder, one would
typically center their input features so that the third line could be evaluated via f(xS , 0−S).
Although these are clearly very heavy assumptions, these are the same simplifications which
allowed for SHAP to be relatively computable.

Beyond its clear formulation, another major advantage of the paper was its ease of
computation and strong code support. In particular, the previously mentioned optimiza-
tion formulation from Equation 6 was used for approximating the Shapley value without
inheriting the exponential complexity required to compute the Shapley value exactly.

ϕ̂KernelSHAP = argmin
ϕ∈Rd

{∑
S∈S

m(|S|) ·
[
v(S) − ϕ∅ −

∑
i∈S

ϕi

]2}
(11)

s.t. v(∅) = ϕ∅ and v([d]) =

d∑
i=1

ϕi
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where m(s) = d−1

(ds)·s·(d−s)
. This algorithmic approach was called KernelSHAP because of its

use of the Shapley kernel. Once again, we use modern notation instead of the original. The
key difference from the exact equation is the use of an approximating set of subsets S ⊆
P([d]) instead of measure the blackbox function on all 2d possible subsets. Algorithmically,
there was also a choice to always include the smallest and biggest subsets inside S (i.e. S
where |S| = 1, 2, d−1, d−2) and there was a small L1 penalty applied to encourage slightly
sparse explanations.

This quickly attracted attention from many different perspectives and is currently the
most popular and well-studied explainability approach.

3.2.3 Variants of SHAP

As was quickly realized, however, the Shapley value depends critically on how the machine
learning problem is translated into a choice of value function. The ‘many Shapley values’
paper (Sundararajan and Najmi, 2020) was among the first to clearly articulate this point.

They begin by noting how several works prior to the SHAP paper have made attempts
to apply the Shapley value solution concept to machine learning applications. (Lindeman,
1980) and (Kruskal, 1987) apply to linear regression’s R2 values, averaging across all order-
ings of the input features (not realizing the connections with the Shapley value); (Owen,
2014) and (Owen and Prieur, 2017) apply the Shapley value to the variance explained for
a general function (not just a linear function); and (Strumbelj et al., 2009), (Strumbelj
and Kononenko, 2010), (Strumbelj and Kononenko, 2014), and (Datta et al., 2016) all ap-
ply Shapley to model explanations in a very similar way to SHAP for the goal of model
explainability (Lundberg and Lee, 2017).

In addition, the work makes connections with existing methods like Integrated Gradients
(IG) were made with a variant of the Shapley value (Sundararajan et al., 2017; AUMANN
and SHAPLEY, 1974) and mentions follow-up works like (Lundberg et al., 2018) continuing
to develop Shapley applications. Alongside soon-to-be-published works like (Lundberg et al.,
2020; Covert et al., 2020), this begged the question of what is the right Shapley value, with
(Sundararajan and Najmi, 2020) giving a first attempt at answering the question.

Although the question itself was not necessarily answered, (Covert et al., 2021) gave an
excellent answer to the many Shapley values question, carefully characterizing and cata-
loging the many published works on the topic, emphasizing the choice of:

1. summary technique

2. captured model behavior

3. feature removal technique

For our discussion, we will focus on the Shapley summarization technique, although simpler
approaches like removing or including an individual feature were also surveyed. For the
captured model behavior, this is mostly two possibilities: (i) the case of explaining an
individual prediction; or (ii) the case of total loss of the method (e.g. the R2 or remaining
variance in the case of regression).

Finally, the critical choice of feature removal technique generally resulted in three main
approaches: replace by a baseline feature, marginalize out a feature by its marginal dis-
tribution, or marginalize out a feature by its conditional distribution. In the context of
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explaining a prediction, this results in:

vbase(S) := Mbase
S ◦ f := f(xS , x̄−S) (12)

vmarg(S) := Mmarg
S ◦ f := EX̄−S∼p(X−S)

[
f(xS , X̄−S)

]
(13)

vcond(S) := Mcond
S ◦ f := EX̄−S∼p(X−S |XS=xS)

[
f(xS , X̄−S)

]
(14)

There are additional methods for removing features are there are always continuing devel-
opments on how to appropriately remove a feature within a certain context. Some vision-
specific examples include image blurring (Fong and Vedaldi, 2017; Fong et al., 2019) and
conditional VAEs/ GANs (Chang et al., 2019). There are also notions of setting a feature
to a certain value, such as following Pearl’s do() operator framework (Heskes et al., 2020;
Jung et al., 2022). They show how there can be a sensitive and counterintuitive results
if one believes Shapley represents a causal influence without understanding the underlying
causal structure.

Debate over these choices in how to reduce to the value function continue into the present
day. Despite (Lundberg and Lee, 2017) and predecessors making it explicit that the choice
of marginal and baseline are only a simplifying choice for computational reasons, there are
still researchers who argue for the use of the marginal value. A major argument is that of
(Janzing et al., 2020) which argues that under the independence assumption, the leads to
a causal interpretation, with respect to the model’s prediction, calling it the interventional
Shapley instead of the marginal Shapley.

Another major discomfort from those supporting the marginal approach (besides the
preference for computationally easier values) is regarding the apparent paradox that a model
which exclusively uses A instead of B can be found to have importance for feature B due to
the heavily correlation between A and B (Merrick and Taly, 2020). This is in direct contrast
to those who take the statistical perspective that A and B contain the same information
content, making models which use A or B fundamentally similar (Adler et al., 2018). (Frye
et al., 2021) provides a convincing argument for why researchers should never use the
baseline or marginal approaches for correlated features, namely that when making queries
to the model ‘off the manifold’ where it saw training data, this leads to the classic ‘garbage
in, garbage out’ issue and leads to unpredictable behavior from the model. This sentiment
has been further echoed by other researchers working on feature-based explanations (Hooker
and Mentch, 2019; Yeh et al., 2022).

We implore those authors who sympathize with the name of ‘interventional Shapley’
to justify which of their favorite datasets have independent features. Nevertheless, many
researchers continue to be attracted to this style of explanation, either due to the compu-
tational simplicity or due to being interested in a more mechanistic explanation of which
inputs will change the output. Although completely ignoring the data manifold can only
lead to catastrophically irrelevant explanations, the most important considerations are jus-
tification of the explanation technique for the particular application at hand.

Finally, before moving on to the next section, we will discuss some of the model-specific
variants of SHAP. Generally, these are some approaches which are specially designed for
certain architectures or thereby have some computational advantages. The most major of
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these should be the approach of TreeSHAP (Lundberg et al., 2018) which was one of the
earliest approaches to have a computationally easy way to calculate the SHAP value for the
specific architecture of decision trees or random forests. Although it was not well understood
at its origin, it is now better understood that this algorithm requires the assumption of
independent input features to calculate the marginal SHAP value, and otherwise computes
a model-specific version of the SHAP value which is neither the marginal or conditional
(Amoukou et al., 2022; Filom et al., 2024). Nevertheless, due to its great popularity at
the time, several extensions to enhance the algorithm, including GPU Tree SHAP (Mitchell
et al., 2022b) and Fast Tree SHAP (Yang, 2022).

Another major class of interesting machine learning algorithms are those of kernel ma-
chines. This includes the method RKHS SHAP (Chau et al., 2022) for reproducing kernel
Hilbert spaces, which again unfortunately is restricted to the assumption of independent
features by nature of the tensor product structural assumption on the Hilbert spaces. Then
there is the extension from RKHS SHAP to GP SHAP (Chau et al., 2023) which extends to
Gaussian Processes. There they also consider the method of Bayes-GP-SHAP as an attempt
to integrate both the GP posterior uncertainty and the SHAP approximation uncertainty
into the same approach. The generalized additive model has also seen specific algorithms
due to the similar additive structure of each (Bordt and von Luxburg, 2023; Enouen and
Liu, 2025). These methods also face challenges in interpretation under heavily dependent
features.

In addition to these model-specific enhancements, there has also been many works fo-
cusing on faster and more efficient approximation of the Shapley value, especially extending
the two major approximation algorithms of permutation sampling and the kernel approx-
imator. This includes empirical studies of permutation sampling (Mitchell et al., 2022a),
functional extensions of kernel estimation (Jethani et al., 2022), approximating without
marginal contributions (Kolpaczki et al., 2024), and many more.

3.2.4 SHAP for Data Valuation

As discussed thoroughly in the previous section, the major effort of defining the Shapley
value for a certain problem is in the setup of the value function –which is to then be
summarized by the Shapley solution. The previous section focused entirely on how the
removal of a feature would affect an individual prediction or the total loss; however, this
section will instead look at removing a data point. Many of these works focus on explaining
the loss rather than the prediction. This is another key set of value functions to explore for
interpreting machine learning models and has helped spark an entirely different direction
of research.

Although influence functions had already been classically proposed for this problem
(Cook, 1977; Cook and Weisberg, 1980, 1982) and also modernized for the modern machine
learning era (Koh and Liang, 2017), there was an explosion of research on the topic after
the introduction of the Data SHAP method (Ghorbani and Zou, 2019; Jia et al., 2019b).

V (S) := Eθ̂∼pS,A(θ̂)

[
Ltest(fθ̂)

]
s.t. θ̂ ≈ argmin

θ

{
Ltrn,S(fθ)

}
(15)

where A denotes the specific algorithm chosen to minimize the empirical risk Ltrn,S over

the subset S ⊆ [n] of the full n training data points. pS,A(θ̂) denotes the distribution

20



Survey of ML Interpretability via Interactions

over the approximately optimal θ̂ returned by algorithm A when trained on data subset
(x(j), y(j))j∈S . For a deterministic algorithm A, this will be a Dirichlet distribution with
100% of its mass on the returned parameters. For simplicity, let us also write z := (x, y) ∈
Z := X × Y with training dataset Ztrn = {z(i)}ni=1 = {(x(i), y(i))}ni=1.

The complexity of retraining a model for each coalition of data points, a requirement
for computing this value function at a value S, is extremely costly, even for moderately
sized ML models. This is the extremely major disadvantage of this formulation and has
been a challenge of this research direction since the beginning. This is also why alterna-
tive approaches like TracIn (Pruthi et al., 2020) and representer points (Yeh et al., 2018)
avoid retraining entirely, instead using gradient approximations or representer theorems,
respectively.

Despite these many challenges, the allure of an approach for fairly dividing value amongst
the different data points has resulted in continuing developments of this research direction.
First, (Ghorbani et al., 2020) removes the dependence on a specific dataset context and
reframes the data SHAP value as a dataset-dependent value to a distributionally-dependent
value. The original data SHAP can be written like Equation 5 as:

ϕDataSHAP
i =

n−1∑
k=0

1

n
·

∑
S⊆([n]−i)
s.t. |S|=k

(n−1
k )−1 ·

[
V (S + i) − V (S)

]]
(16)

where it becomes more clear that from the perspective of data point i, S serves the role of
a random data subset of size k. The distributional Shapley value (Ghorbani et al., 2020)
makes this clear by actually sampling the zS = (xS , yS) randomly from a distribution, D,
instead of subsampling from a fixed dataset (x(j), y(j))j∈S .

ϕDistSHAP :=
n−1∑
k=0

1

n
· EZ∼Dk

[
V (Z + z(i)) − V (Z)

]
(17)

where Z is a random dataset of size k, sampled i.i.d. according to distribution D. We also
abuse the notation of V , allowing it to take data points instead of subsets which represented
those data points, extended in the obvious way.

Although very similar to the original definition, there is no longer a dependence on the
fixed dataset which was drawn, much like how the influence of a random algorithm was
averaged out in the original definition. Both of these choices abstract away details of the
implementation process while maintaining the critical details to define the data valuation
process, mirroring the developments of blackbox explainability.

Similar to the ‘model-specific’ SHAP variants, model-specific data SHAP variants have
also emerged. Unsurprisingly, the data influence of a hard-label k-NN model is relatively
easy to compute (Jia et al., 2019a). Further calculations were done for the distributional
SHAP on linear models, logistic models, and kernel density estimators (Kwon et al., 2021).
Follow-up work continued to improve the efficiency of DataSHAP estimation for weighted
k-NN classifiers (Wang et al., 2024a).

Further developments continued, introducing variations of the Shapley value for ex-
plaining the value functions. In particular, removing the efficiency axioms resulted in a
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‘semivalue’ (discussed in the next section) with approaches like Beta Shapley (Kwon and
Zou, 2022), Least Core for data attribution (Yan and Procaccia, 2021), and Data Banzhaf
(Wang and Jia, 2023). Follow up works have contextualized the limitations of Data SHAP
and variants for downstream tasks like data selection (Wang et al., 2024b). Other works
have managed to come full circle, reframing original gradient approximations back within
the Shapley framework (Wang et al., 2025). Further details on data valuation can be found
in (Hammoudeh and Lowd). We will now transition into a discussion of semivalues and
other probabilistic values in greater detail.

3.2.5 Extensions of Shapley - Probabilistic Values

The cooperative game theory literature did not stop advancing after the introduction of
Shapley’s 1953 method, and many further extensions of the Shapley value have been devel-
oped in the half a century which it took for the ML community to pick up on the value.
In alternate contexts, many of the defining axioms of the Shapley value may be impor-
tant to get rid of. Many of these approaches have also been incorporated into the ML
interpretability literature.

The largest class of these are the probabilistic values which are generally defined as
solutions which only obey the linearity axiom and the dummy axiom (dropping symmetry
and efficiency). These are further categorized as efficient probabilistic values, also called
quasivalues, which obey every axiom except for symmetry, and symmetric probabilistic
values, also called semivalues, which obey every axiom except for efficiency.

Definition 2. (Weber, 1988) A probabilistic value can be defined as those values which,
for each i, obey:

ϕi(v) =
∑

S⊆([d]−i)

pi(S) ·
[
v(S + i) − v(S)

]
(18)

for some probability distribution pi(S) over all of the coalitions without i, namely S ∈
P([d] − i). In other words, a probabilistic value can be defined by an averaging over its
marginal contributions for some specified averaging scheme which depends on i.

Theorem 4. (Weber, 1988) A solution is a probabilistic value iff it obeys the additivity
(linearity) axiom and dummy axiom.

This covers a fairly wide number of solution concepts of interest, including the Banzhaf
value, Owen value, and Myerson value. Of course lifting both of the symmetry and efficiency
axioms without regard is uncalled for, and it is commonly of interest to lift only one of the
symmetry and efficiency axioms, called the semivalue and quasivalue (random order value).

Definition 3. (Weber, 1988) A random order value (or quasivalue) can be defined as
those values which, for each i, obey:

ϕi(v) =
∑
π∈Πd

p(π) ·
[
v(Sπ

i + i) − v(Sπ
i )
]

(19)

for some distribution p over all permutations of [d], namely π ∈ Πd.
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Theorem 5. (Weber, 1988) A solution is a random order value iff it obeys additivity,
dummy, and efficiency.

It becomes clear why this is a random order value because we order the players randomly
and then take their marginal contribution according to ordering. This extends Shapley’s
weighted value (Shapley, 1953; Kalai and Samet, 1987) and the more general path value
(Owen, 1972). Another specific random-order value of interest is the Owen value (Owen,
1977) with developments and extensions by (Hart and Kurz, 1983) and (Winter, 1989).

Definition 4. (Weber, 1988) A semivalue can be defined as those values which, for each
i, obey: distribution over coalition sizes

ϕi(v) =
∑

S⊆([d]−i)

pi(|S|) ·
[
v(S + i) − v(S)

]
(20)

for some ‘distribution’ pi(s) over the possible sizes of S, i.e.
∑d−1

s=0 [
(
d−1
s

)
· pi(s)] = 1.

Here, the Banzhaf value (Banzhaf, 1965) is the greatest representative here, with also
integral extensions in a similar fashion to path values providing a bijection with possible
semivalues (Dubey and Weber, 1977; Dubey et al., 1981).

Definition 5. (Banzhaf value) the Banzhaf value may be defined in its ‘closed form’
solution in terms of using each v(S) only once as:

ϕBz
i (v) =

∑
S⊆([d]−i)

1

2d−1
·
[
v(S + i) − v(S)

]
, (21)

but this can easily be seen to be equal to taking the same sum over all 2d possibilities or
by grouping by marginal size, making the semivalue formula, Equation 19, clear:

ϕBz
i (v) =

d−1∑
k=0

1

2d−1
·

∑
S⊆([d]−i)
s.t. |S|=k

[
v(S + i) − v(S)

]
(22)

Lastly, the Banzhaf value can also be put into its purified form in terms of the purified
contributions:

ϕBz
i (v) :=

∑
S∋i

ṽ(S)

2(|S|−1)
(23)

Important extensions which do not obey either of the original symmetry or efficiency
axioms originally often incorporate some alternative structure: the AD value (Aumann and
Dreze, 1974) respects a partition of the players (obeying partition-symmetry and partition-
efficiency) and the Myerson value (Myerson, 1977) respects graphical connections between
the players. The Owen-Winter value (Owen, 1977; Winter, 1989) also respects hierarchical
partitioning, but obeys normal efficiency. A great resource for starting to explore these
topics in greater depth is (Winter, 2002; Monderer and Samet, 2002).

Important topics related to these approaches but somewhat beyond the individual meth-
ods are the potential function (Hart and Mas-Colell, 1989), the Harsanyi dividend (Harsanyi,
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1963), and monotonic solutions (Kalai and Samet, 1985). Additionally, solution concepts
beyond the probabilistic values are: the von-Neumann-Morgenstern solution (von Neumann
et al., 1944), the core (Gillies, 1959; Shapley, 1965), the least core (Maschler et al., 1979),
and the nucleolus (Schmeidler, 1969).

Simple Monotone Games These axioms and solutions have also been quite extensively
studied in the context of what are called simple monotonic games or voting games. In the
machine learning language, this is interested in dealing with the case of binary classification
rather than regression (players voting for the result). These games are both simple and
monotone.

Definition 6. (Simple) v : P([d]) → {0, 1}

Definition 7. (Monotone) If v(S) = 1 and R ⊇ S, then v(R) = 1.

where v takes the interpretation of describing a coalition S as ‘winning’ (1) or ‘losing’ (0).
It is very often in the context of voting, where a coalition represents the voters willing to
vote for the bill.

It is here actually, where the Banzhaf value (Banzhaf, 1965), or occasionally Penrose-
Banzhaf value (Penrose, 1946), actually predates the Shapley value, or more specifically
in this context the Shapley-Shubik value (Shapley and Shubik, 1954), in its original 1946
conception. In this new context of voting games, many axioms need to be slightly rein-
terpreted. It is here where these values are usually called an ‘index of power’ instead of a
‘value’ to refer to the voting power held, rather than the monetary value distributed.

It is here where the concept of the ‘minimal winning coalition’ also becomes a more
critical aspect of the definition.

Definition 8. (Winning Coalition) A set S is a winning coalition if v(S) = 1. Due to
monotonicity, this implies v(R) = 1 for all R ⊇ S.

Definition 9. (Minimal Winning Coalition) A set S is a minimal winning coalition if it is
a winning coalition containing no other winning coalition. v(S) = 1, but v(S − i) = 0 for
all i ∈ S.

These are necessary to define the Deegan-Packel index (Packel, 1978), which weights
each MWC S as 1

|S| to all i ∈ S and averages this amount over all MWCs, IMWC = {S :

S is MWC}.

Definition 10. (Deegan-Packel index)

ϕDP
i :=

1

|IMWC|
∑

S∈IMWC

1(i ∈ S)

|S|
(24)

Relatedly, we will call a player i critical for coalition S if removing i results in a losing
vote, we will call a set’s critical number the number of critical players, and we will call a
set critical if it has critical number greater than zero. Write Icrit = {S : S is critical}.

Definition 11. (Critical Player) A player i is critical for S if S is winning but S− i is not:
v(S) = 1 and v(S − i) = 0.
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Definition 12. (Critical Number) A set S has critical count, Crit(S) = |{i ∈ S : i is critical in S}|.

These are necessary to define the Johnston index (Johnston, 1977), which replaces the
Banzhaf uniform scoring across critical sets with a balance based on the number of players
which criticality is shared with.

Definition 13. (Johnston Index)

ϕJs
i :=

cJsi∑
j cJsj

where cJsi :=
∑

S∈Icrit

1(i is critical in S)

Crit(S)
(25)

It is here where I also emphasize that the commonly used phrase ‘game-theoretic’ ex-
plainability is really a stretch. In particular, although the Shapley value has its roots in
cooperative game theory, extending the analogy beyond superadditive value functions and
monotone voting functions where these game-theoretic approaches draw their conceptual
origins really strains this analogy. It can be seen how these DP and Js indices provide a
first look at the type of indices which require more than the additive ‘mobius’ structure and
begin to focus on the game-theoretic aspects of the problem. Some additional values in this
direction are the Holler-Packel index (Holler, 1978; Holler and Packel, 1983; Napel, 1999;
Holler and Napel, 2004) and the shift minimal winning coalition index (Alonso-Meijide and
Freixas, 2010; Alonso-Meijide et al., 2012). A great resource for an introduction into the
measurement of voting power is (Felsenthal and Machover, 1998).

3.2.6 Extensions of Shapley - Feature Interactions

Although we have already established the long history of studying the detection of feature
interactions, in the modern context of explainability for machine learning, we find it conve-
nient to group all of the interaction-based explanations as though they were motivated by
SHAP, even though this is not truly the case.

We begin by recalling the purified form of the game by the Mobius transform from
Equation 2:

ṽ(S) :=
∑
T⊆S

(−1)|S|−|T | v(T ) (26)

We now define the discrete derivative operator, δS , by writing w = δS ◦ v as:

w(T ) = [δS ◦ v](T ) :=
∑
R⊆S

(−1)|S|−|R| · v(T − S + R) (27)

It can be noticed that [δS ◦ v] can equally be defined only on T ⊆ ([d] − S) because for any
such T , w(T ) = w(T +Q) = w(S) for all Q ⊆ S. This is similar to how Shapley values and
probabilistic values are only defined over ([d] − i). It can also easily be seen that:

ṽ(S) = [δS ◦ v](∅) (28)
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We may now define the simplest feature interaction explanations which are the inclusion
and removal values, ϕinc and ϕrem, in terms of the discrete derivative, δS :

ϕinc
S (v) := [δS ◦ v](∅) =

∑
R⊆S

(−1)|S|−|R| · v(R) (29)

ϕrem
S (v) := [δS ◦ v]([d]) =

∑
Q⊆S

(−1)|Q| · v([d] −Q) (30)

From this it can be seen that:

ϕinc
S (v) = ṽ(S) ϕrem

S (v) =
∑
T⊇S

ṽ(T ) (31)

The line of research from the cooperative game theory literature, despite the large variety
of solution concepts for value allocation and voting power, would not study the interaction
strength between two players until 1999. Measuring the strength of a pair of players rather
than their individual strengths first appeared in the work of (Grabisch and Roubens, 1999)
which extended the Shapley axioms to be able to apply to this different situation. Solution
concepts for this scenario are generally called interaction indices instead of values based off
this first solution being called the Shapley Interaction Index. The solution was obtained by
combining the two players i and j together into a joint player and then applying the Shapley
value, comparing that against the individualized contributions of those same players. The
typical definition is given as

ϕSII
S (v) =

∑
T⊆[d]−S

(d− |S| − |T |)!|T |!
(d− |S| + 1)!

∑
L⊆S

(−1)|S|−|L|v(L + T ), (32)

which can be shown to be equal to

ϕSII
S (v) =

1

d− |S| + 1

∑
T⊆[d]−S

(
d− |S|
|T |

)−1 ∑
R⊆T

ṽ(S + R), (33)

and with just a little more work is equal to

ϕSII
S (v) =

∑
R⊆[d]−S

1

(|R| + 1)
ṽ(S + R), (34)

which is nearly the same as the purified version of the Shapley value from Equation 23.
Modern attempts to create another Shapley interaction index would not appear until

two decades later with in the explainability literature: the Shapley-Taylor Interaction Index
(Sundararajan et al., 2020), the Faithful Shapley Interaction Index (Tsai et al., 2023), and
the k-Shapley Interaction Index (Bordt and von Luxburg, 2023).

Accordingly, it is here where our story of feature interaction detection picks back up as
the historical approaches bleed into the modern approaches working on interaction detection
from the perspective of explainability. As we left off in the end of Section 3.1, the problem of
interaction detection was beginning to gain traction in high-dimensional statistics with (Bien
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et al., 2013) and (Hao and Zhang, 2014a) using heredity to ensure detection of interactions
even in the presence of high-dimensional data and few available samples. Follow-up works
continued to look at selecting from all pairwise interactions without having to face the full
quadratic complexity in terms of the input dimension (Lim and Hastie, 2015; Bien et al.,
2015; Kong et al., 2017).

Around this time, the importance of interactions for the interpretability literature was
starting to become increasingly well-known. Existing tools like LIME and SHAP were ill-
equipped for handling or describing the interaction between inputs like in word negation
in natural language and part hierarchies in computer vision. Early works like NID (Tsang
et al., 2018a) and CD (Murdoch et al., 2018) gave early architecture-specific approaches for
understanding the nonlinear interactions occurring within neural networks.

Important follow-up works use model-agnostic approaches for the detection of inter-
actions. The Shapley-Taylor interaction index (Sundararajan et al., 2020) uses a Taylor-
series-like expansion which gives all interactions of degree less than k exactly their purified
contribution and splits the remaining contributions amongst those interactions of degree k.

ϕShapleyTaylor-k
S (v) =

{
ṽS , if |S| < k∑

T⊇S

(|T |
|S|
)
· ṽT , if |S| = k

(35)

which is designed to satisfy efficiency when considering the entire set of singles and pairs
I≤2 := {S : S ⊆ [d], |S| ≤ 2}.

The approach of Archipelago (Tsang et al., 2020b) also took a model-agnostic approach
to define the importance of an interaction

ϕArchDetect
S (v) =

1

2
ϕinc
S (v)2 +

1

2
ϕrem
S (v)2 (36)

ϕArchAttrib
S (v) = v(S) − v(∅) (37)

where we write the definition in terms of the inclusion and removal values, ϕinc and ϕrem,
defined above in Equation 30. Note that the ϕArchDetect score is designed to be positive to
measure the strength of an interaction, whereas ϕArchAttrib is can be positive or negative to
measure the overall effect of the feature set S. Follow-up works also consider the consider
the Archipelago defined as an interaction index as:

ϕArchipelago
S (v) =

1

2
ϕinc
S (v) +

1

2
ϕrem
S (v), (38)

which has both ϕArchDetect
S ̸= (ϕArchipelago

S )2 and also ϕArchipelago
S ̸= ϕArchAttrib

S .

Not too long after, further attempts at defining a ‘correct’ interaction index extend-
ing the Shapley value would be developed from the interpretability literature. The Faithful
Shapley Interaction Index (Tsai et al., 2023) or Faith-SHAP would be introduced by extend-
ing the variational formulation of Shapley from Equation 6. Equation 6 is first reformulated
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as Equation 39 and then extended to the definition in Equation 40.

ϕSHAP = argmin
ϕ∈Rd

{ ∑
S⊆[d]

m(|S|) ·
[
v(S) − ϕ∅ −

d∑
i=1

I
(
{i} ⊆ S

)
· ϕi

]2}
(39)

s.t. v(∅) = ϕ∅ and v([d]) = ϕ∅ +
d∑

i=1

ϕi,

ϕFaithSHAP-k := argmin
ϕ∈Rd

{ ∑
S⊆[d]

m(|S|) ·
[
v(S) −

∑
T∈I≤k

I
(
T ⊆ S

)
· ϕT

]2}
(40)

s.t. v(∅) = ϕ∅ and v([d]) =
∑

T∈I≤k

ϕT ,

where m(s) is taken equal to m(s) = (
(
d
s

)
· s · (d− s))−1 as before and I≤k := {S : S ⊆

[d], |S| ≤ k}. This definition simply takes the one-dimensional additive model and extends
it to the k-dimensional additive model in trying to capture the ‘best approximation’ to the
true value function v(S).

Around the same time, the k-Shapley value or k-Shapley interaction index (Bordt and
von Luxburg, 2023) was defined as the correction the SII value which additionally obeys
the efficiency axiom. This is achieved by setting the largest subsets with |S| = k as the SII
value and recursively defining lower-order values such that they obey efficiency:

ϕk-SII
S (v) =

ϕSII
S (v), if |S| = k

ϕ
(k − 1)-SII
S (v) + Bk−|S| ·

∑
R s.t.

R⊇S,|R|=k
ϕSII
R (v), if |S| < k

(41)

where Bn are the Bernoulli numbers (which can be defined as the sequence obeying B0 = 1
otherwise

∑n
i=0

(
n+1
i

)
Bi = 0). These are simply the combinatorial numbers required to

balance the coefficients of the interaction index to sum to the full function across all subsets
S ∈ I≤k.

Although there are several more approaches to explaining interactions in the literature,
many of these approaches are model-specific or tied to a specific application domain. We will
cover these in Section ??. Accordingly, this already covers the majority of model-agnostic
approaches to understanding interactions. There is one final approach to interactions which
is actually quite classical, this is the area of sensitivity analysis from the 1990s. Here, we
are usually interested in how important an interaction is for the entire dataset, rather than
for the individual sample. Nevertheless, the approaches are fundamentally related and will
help further cement the relationships between all of these slightly different areas.

3.2.7 Relation with Sensitivity Analysis

It has become increasingly popular to understand the connections with the functional
ANOVA decomposition or what is often called the Mobius transform in XAI literature
(Herren and Hahn, 2022; Fumagalli et al., 2025). In this section, we give a first look at
this connection between the Shapley value, before a deeper understanding of this three-way
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connection between feature interactions, additive models, and sensitivty analysis are further
explored in Section 4.5.3.

Variance-based sensitivity analysis, sometimes called the method of Sobol’, is based on
the functional ANOVA decomposition

f(x) =
∑
S⊆[d]

f̃S(xS) (42)

where as before we have the purified functions as

f̃S(xS) =
∑
T⊆S

(−1)|S|−|T | · (Mcond
T · f). (43)

Note that because the original application (Sobol’, 1990) to simulated experiments allowed
researchers to make the assumption that all input variables are independent. Accord-
ingly, using Mcond or Mmarg is equivalent and modern extensions have considered both
approaches, although Mcond is seemingly more popular.

As pointed out in (Herren and Hahn, 2022; Bordt and von Luxburg, 2023; Enouen and
Liu, 2025), it can be seen fairly immediately that this allows for a correspondence between
the SHAP functional applied to a machine learning model and the functional ANOVA
decomposition, extending the form in Equation 23:

[ϕSHAP
i · f ](x) =

∑
S∋i

f̃(xS)

|S|
(44)

The key object of study for sensitivity analysis approach is the set of Sobol indices (Sobol’,
1990) defined as:

σS := VarXS

[
f̃S(XS)

]
(45)

Please note again that this definition is also worth scrutinizing because there are multiple
equivalent formulations in the independent variable case and there is no obvious consensus
on how to extend the original techniques.

The major property of the Sobol’ indices is the decomposition of variance formula
which states that:

σ2 := VarX

[
f(X)

]
=

∑
S⊆[d]

VarXS

[
f̃S(XS)

]
=:

∑
S⊆[d]

σS , (46)

meaning that the total variance of the function f decomposes into a measure of how much
variance there is across each of the different interactions S. Critically, this formula only
holds in the case of independent input variables and completely breaks down for correlated
variables.

There is additional the total-effect index, usually defined as:

ϕSobol-total
S := Ex̄−S

[
VarXS∼p(XS |X−S=x−S)

[
fS(XS , x−S)

]]
(47)
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which in the independent variable case is equal to ϕSobol-total
S =

∑
T⊆[d] s.t. T∩S ̸=∅ σT .

Because of the decomposition of variance formula, it is also common to consider the Sobol
index as the percentage of the variance explained, as in σ′

S := σS/V[f ]. The same can be
done for the total index, ϕ′Sobol-total

S := ϕSobol-total
S /V[f ].

Other work had already made a connection between this global variance sensitivity and
the Shapley value (Owen, 2014) by leveraging these known properties of the Sobol’ indices.
Writing

ϕSobol-lower
S =

∑
T⊆S

σT and ϕSobol-upper
S =

∑
T⊆[d] s.t. T∩S ̸=∅

σT , (48)

as typical manipulations of the Sobol’ indices, it was noted how applying the Shapley value
to the value function defined as vSobolS = ϕSobol-lower

S results in the bound

ϕSobol-lower
{i} ≤ ϕShapley

i ◦ vSobol ≤ ϕSobol-upper
{i} . (49)

This is only true in the case of independent variables and is straightforward to see from
Equation 23 and the fact that σS ≥ 0.

It is worth noting how the Shapley of the variance from (Owen, 2014) is different from
the variance of the Shapley as in the Shapley value for independent variables.

ϕShapley
i ◦ vSobol =

∑
S∋i

σS
|S|

(50)

V
[
ϕSHAP
i ◦ f

]
=

∑
S∋i

σS
|S|2

(51)

From here, there is not much more which can be said about functional ANOVA without
a further discussion on additive models. In the next section, we give a thorough discussion
on additive models, again beginning with a historical overview. Hopefully, these results
already begin to demonstrate how intimately tied these originally different research areas
of feature interactions, Shapley values, and sensitivity analysis truly are. It is a major
goal of this survey to clarify and to emphasize these connections which exist very deeply
across these related areas. We will have another discussion on these functional ANOVA
connections in Section 4.5.3 after the introduction of additive models.
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4 Additive Interpretability (Additive Models)

4.1 A History of Generalized Additive Models

Let us once again turn to the very beginning of statistics with the advent of linear regression.
One of the first clear publications on the topic is A.M. Legendre’s 1805 work (Legendre,
1805) on the method of least squares for applications in astronomy (claimed also by Gauss
(Gauss, 1809) for the same application). Not too long after, Francis Galton, beginning in
1875, applied the same technique to problems which are more statistical in nature, like
predicting the height of a sweet pea plant from the height of its parent (Galton, 1894).
Galton continued his studies onto human height and other heredity questions, seeming to
incidentally give the name ‘regression’ around this time (Galton, 1886). After his death,
Karl Pearson later picked up his mentor’s work on sweet peas and genetics, ultimately
synthesizing his works on linear regression and providing much greater mathematical rigor
(e.g. Pearons’ correlation coefficient, chi-square test, method of moments) (Pearson, 1914).
Further developments in the beginning of the twentieth century like those of Ronald Fisher
(Fisher, 1935) as well as those of Jerzy Neymann and Egon Pearson (Neyman and Pearson,
1933) finalized statistics as its own independent field of study.

Picking back up with the rapid developments in statistics near the end of the 20th
century, the linear regression model had already seen ubiquitous use in statistics for decades
at this point. A major development relevant for our discussion on the generalized additive
model is the invention of the generalized linear model (Nelder and Wedderburn, 1972;
McCullagh and Nelder, 1989).

E[Y |X = x] ≈ f̂(x) = g−1(βTx) (52)

Via the introduction of a link function, g, this framework unified the learning of a variety of
distributions using a simplified linear model. Originally for the important logistic regression
as well as Poisson regression and Gamma regression, and later to density estimation and
other exponential families, this framework comprehensively unified many linear models.

Other critical precursors are the development of splines as a nonparametric approach
(Schoenberg, 1964; Casteljau, 1986; Bézier, 1972; Birkhoff and De Boor, 1965; De Boor)
and their subsequent application to scatterplot smoothing (Reinsch, 1967; Kimeldorf and
Wahba, 1970, 1971; Wold, 1974; Wahba and Wold, 1975; Craven and Wahba, 1978; Golub
et al., 1979; Rice and Rosenblatt, 1983; Silverman, 1984; Eubank, 1985)

Application of these one-dimensional techniques to multivariate data required usage of
the more complex surface splines (Duchon, 1977) or the choice of a particular direction to
linearly project the multidimensional data (Friedman and Tukey, 1974). Building on the
idea of projection, Friedman and Stuetzle (1981) instead suggested the ability to project
onto multiple directions and add up the total influences, leading to the additive modeling
assumption. Additionally, the potential merits of projecting onto the coordinate directions
were also suggested:

f̂(x) =

d∑
i=1

fd(xd) (53)
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This work not only introduced the nonparametric additive model to the literature, but
also introduced the backfitting algorithm for iteratively fitting the shape functions of the
additive model (Friedman and Stuetzle, 1981).

This original idea was taken further by Stone (1985) to give some theoretical devel-
opments and Breiman and Friedman (1985) to develop the ACE algorithm. At the same
time, other works doing semiparametrics were giving special attention to reducing the non-
parametric estimation to as few components as possible (Green et al., 1985; Engle et al.,
1986). It was around this time that the Generalized Additive Model (GAM) combining
the nonparametric additive structure with the generalized link function allowing for regres-
sion, classification, etc. to be incorporated together. First combined as a 1984 technical
report (Hastie and Tibshirani, 1984), then into a 1986 paper (Hastie and Tibshirani, 1986),
and finally into a full book in 1990 (Hastie and Tibshirani, 1990), the generalized addi-
tive model proposed an extremely flexible nonparametric modeling structure which still
overcame practical considerations like the curse of dimensionality.

By the time of the final book, the additive model had already been popularized and
seen some attention from many other researchers (Stone, 1982; Friedman et al., 1983, 1984;
Burman, 1985; Stone, 1986; Buja et al., 1989; Chen et al., 1989; Gu and Wahba, 1991b).
Moreover, extensions to interaction models (mostly in the form of interaction splines) had
been studied, chiefly by Wahba and her students (Barry, 1986; Wahba, 1986; Gu et al.,
1989; Chen, 1987, 1991a). Indeed, just months later, a book focusing entirely on smoothing
splines would be published by Wahba (Wahba, 1990).

Continued developments would improve on existing works like interaction models (Stone,
1985) and MARS (Friedman, 1991) to combine tensor product splines and thin plate splines
(which were previously viewed as separate approaches) under the same framework called
Smoothing Spline ANOVA (Gu and Wahba, 1991a, 1993b) as in Equation 54:

f(x) = C +

d∑
α=1

fα(xα) +
∑
α<β

fαβ(xα, xβ) +
∑

α<β<γ

fαβγ(xα, xβ, xγ) + . . . (54)

This nonparametric description already provided the precursors for the functional ANOVA
perspective which we will see connects with the approaches from sensitivity analysis. Many
refinements of this approach continued (Chen, 1991a; Gu and Wahba, 1991b, 1993a,b),
ultimately culminating into Wahba’s 1995 memorial lecture (Wahba et al., 1995), with later
extensions to ‘generalized’ applications like density estimation and hazard estimation (Gu,
1995, 1996, 1998) ultimately culminating into Gu’s 2002 book on SS-ANOVA (Gu, 2002).
Although older works like this one make explicitly clear that higher-order interactions are
excluded in practice, the ingredients for a functional ANOVA perspective connecting with
sensitivity analysis can already be seen.

Another key era of interest in the GAM was its indirect attention in the wake of the suc-
cess of boosting. At the time, it was very surprising that a set of boosted tree stumps could
achieve good performance on classification tasks (Freund and Schapire, 1997; Schapire and
Singer, 1998). Shortly after, it was realized that the choice of tree stumps as the weak learner
automatically led to an additive modeling assumption (due to each stump’s dependence on
only a single input feature) (Friedman et al., 2000). Thus, a large subset of researchers
were training additive models without even realizing that is what they were doing. Further
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developments on boosting emphasized this functional perspective, re-envisioning a round of
boosting a weak learner as a gradient step in a functional optimization problem (Friedman,
2001, 2002).

Other work at the turn of the century focused on increasing the practical usefulness of
generalized additive models, with many practitioners remaining weary of the many nuisance
parameters which must be fit in a nonparametric method like smoothing spline ANOVA
(spline knots and smoothing parameter) . Of great significance is the work by Wood making
developments on the splines including better basis functions and efficient multiple smoothing
(Wood, 2003, 2004, 2006b) which ultimately culminated into an R package (mgcv) and
associated book (Wood, 2006a).

Although the history of the additive model does not end here, we take a break to discuss
another important and emerging field, high-dimensional statistics, which ends up being of
great importance to additive models. We will then coming back to discuss recent additive
models after their modern revitalization due to their nice interpretability properties.

4.2 Sparse Additive Models

High-dimensional statistics is an area of statistics focused on describing the statistical be-
havior when classical asymptotic results break down. Although classical results, like the
central limit theorem and likelihood ratios, take the dimension d to be fixed and take the
samples n to infinity, in many empirical situations these asymptotic predictions turn out to
be completely inadequate. This is where high-dimensional statistics comes in, ultimately
evolving to describe the regime when n ≪ d or more broadly when n is somehow comparable
to d (Wainwright, 2019).

Early works identified hints of these potential problems while working with large-scale
datasets, like Rao (1949) and Deev (1970). Rigorous progress was first made in the field
of random matrix theory, which was forced to contend with n ≈ d in the calculation of
eigenvalues of infinite random matrices (Wigner, 1955, 1958; Marčenko and Pastur, 1967;
Pastur, 1972). Soon after, other works brought the same ideas directly into statistical
applications like robust regression, with Huber (1973) introducing the ‘high-dimensional
limit’ which takes c := d

n constant before an asymptotic approach is employed.
In later years, the topic only grew in importance in response to factors like the increasing

availability of high-dimensional data (Breiman, 1995; Tibshirani, 1996) and the increasing
complexity of recovery in signal processing applications (Mallat and Zhang, 1993; Pati et al.,
1993). A quintessential example is the LASSO (Tibshirani, 1996) which uses L1 regulariza-
tion to shrink the coefficients towards sparse estimates via control of the λ1 hyperparameter:

β̂LASSO := argmin
β∅,β

{∥∥Y − (β∅ + Xβ)
∥∥2
2

+ λ1∥β∥1
}

(55)

= argmin
β∅,β

{ n∑
i=1

(
y(i) − β∅ −

d∑
j=1

βjx
(i)
j

)2
+ λ1 ·

d∑
j=1

|βj |
}

(56)

Developments of these original approaches like matching pursuit (Mallat and Zhang,
1993) and orthogonal matching pursuit (Pati et al., 1993) would continue to be enhanced
with basis pursuit (Chen et al., 2001) and sparse dictionaries (Donoho and Huo, 2001; Elad
and Bruckstein, 2002). Further work on the linear problem of the garrote (Breiman, 1995)
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or lasso (Tibshirani, 1996) would be taken by LARS (Efron et al., 2004), ElasticNet (Zou
and Hastie, 2005), and the Dantzig selector (Candes and Tao, 2007). These works would
continue to develop the practical usefulness and emprical understanding of these shrinkage-
based sparsity approaches. Further works would continue to develop a better theoretical
understanding of when these approaches succeed in signal recovery (Candes and Tao, 2005;
Donoho, 2006b; Candes and Tao, 2007; Bickel et al., 2009).

β̂ElasticNet := argmin
β∅,β

{∥∥Y − (β∅ + Xβ)
∥∥2
2

+ λ2∥β∥2 + λ1∥β∥1
}

(57)

β̂Dantzig := argmin
β∅,β

{
∥β∥1 s.t. ∥XT (y − β∅ −Xβ)∥∞ ≤ Cσ

√
log d

}
(58)

Some of the earliest methods transitioning these insights into the more nonparametric
approaches of kernel-based learning were SUPANOVA (Gunn and Brown, 1999; Gunn and
Kandola, 2002) and likelihood basis pursuit (LBP) (Zhang et al., 2004).

β̂SUPANOVA := argmin
β∅,β

{∥∥Y − (β∅ + Φβ)
∥∥2
2

+ λ1∥β∥1
}

(59)

β̂LBP := argmin
β∅,β

{∥∥Y − (β∅ + Φβ)
∥∥2
2

+ λ1∥β∥1
}

(60)

Although SUPANOVA and LBP focused on the K-ANOVA and SS-ANOVA respectively,
they remained treating basis function coefficients as individual terms to be sparse regular-
ized, requiring multiple stage procedures for ensuring additional sparsity of the ANOVA
components. As the ubiquity of high-dimensional principles became clear throughout the
2000s, it was the COSSO model (Lin and Zhang, 2006) and SpAM model (Ravikumar
et al., 2009) which reduced to simpler GAM-1 models via a restriction of the functional
hypothesis space, but treated a more general nonparametric function with the use of func-
tional norms. These extensions of sparse selection to the additive model would continue
with other ‘SPAM-class’ models: HDAM (Meier et al., 2009), a version for multiple kernel
learning (Koltchinskii and Yuan, 2010) and a version for minimax optimal rates (Raskutti
et al., 2012).

f̂COSSO := argmin
f∅∈R,fi∈Hi

{ n∑
i=1

(
y(i) − f∅ −

d∑
j=1

fj(x
(i)
j )

)2
+ λ1,2 ·

d∑
j=1

∥fj∥Sobolev
}

(61)

where ∥fj∥2Sobolev :=

1∑
ν=0

(
E
[
Dνfj(Xj)

])2
+ E

[
|D2fj(Xj)|2

]

f̂SPAM := argmin
f∅∈R,fi∈Hi

{ n∑
i=1

(
y(i) − f∅ −

d∑
j=1

fj(x
(i)
j )

)2
+ λ1,2 ·

d∑
j=1

∥fj∥
}

(62)

where ∥fj∥2 := E
[
|fj(Xj)|2

]
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Around this time, a major innovation in how to include interaction effects in linear
models would occur with the hierarchical lasso (Bien et al., 2013). The reintroduction of
heredity would later become a key development in the study of feature interactions, which
remains a central focus for modern approaches to the additive model.

4.3 Modern Additive Models

Although additive models had remained a useful statistical model in the years that followed,
their representative power would slowly fade as their main selling point. Indeed, more
powerful models like boosted forests (Schapire, 1990; Freund and Schapire, 1997; Breiman,
1998) and eventually deep neural networks (Mohamed et al., 2011; Krizhevsky et al., 2012;
Bahdanau et al., 2015) proved themselves as incredibly useful modeling tools across a wide
variety of problems (Breiman, 2001b). Accordingly, modern interest in additive models
has been due to reasons contrary to their original motivation: they are now chosen mainly
due to their simplicity compared with the blackbox machine learning and deep learning
approaches which emerged in the past several decades.

Interest in GAMs was once again revitalized when two of its key properties were em-
phasized: (i) interpretability of the additive influence coming from each input feature; and
(ii) near-competitiveness with modern state-of-the-art methods like random forests and
boosting (Lou et al., 2012, 2013). The good performance of additive models across many
real-world datasets alongside the importance of interpretability for certain tasks like medi-
cal applications led to a rekindled interest in the study of GAM models as a solution to the
blackbox problem (Caruana et al., 2015).

Conversations in statistics about the diverging needs of statistical modeling for expla-
nation or statistical modeling for prediction (Breiman, 2001b; Shmueli, 2010) has already
begun by the turn of the century, with methods like Partial Dependence Plots (PDPs)
already providing the first ‘explanations’ of blackbox boosting models (Friedman, 2001).
Nevertheless, the field of interpretability, specifically dedicated to fighting the blackbox
model problem, seems to have only accelerated in the wake of deep learning’s widespread
success across previously untouched domains. As already discussed in Sections 2 and 3,
this led to a flurry of research, beginning in the mid 2010s and continuing to the present
day, which is focused on explaining the complex blackbox models which were being applied
across an increasingly wide set of tasks.

This ultimately led to an extremely wide set of approaches used for explaining blackbox
behavior. It was only as a result of Rudin (2019) putting their foot down and demand-
ing that researchers return to fully interpretable models which faithfully represent their
decisions, rather than using explanations which can only approximate the behavior of the
blackbox model. This is because this work pointed out the fundamental gap existing be-
tween explained approximations and the true blackbox model, for example being a poor
explanation around 10% of the time. Those same gaps happening 10% of the time could be
exactly the critical points where the model behavior needed to be understood in the first
place.

Follow-up works have pushed this duality even further, finding explicit duals between
XAI explanations and IML interpretations (Enouen and Liu, 2025; Günther et al., 2025).
One of the major dualities discussed herein is the duality between SHAP and GAM. As a
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consequence of (Rudin, 2019), there was only a greater desire within the interpretability
community to develop models which are interpretable ‘from the ground up’, leading to
increased interest in additive models as a tool of choice for accurately modeling complex
data while also remaining widely interpretable. As it currently stands, additive models
remain the most well-studied class of interpretable models and seem to be the furthest along
at matching SOTA performance (in tabular data), although other methods are following
close behind.

After the revitalization of interest in GAMs due to the EBM strand of work (Lou et al.,
2012, 2013; Caruana et al., 2015), a next major development occurs with the work of SALSA
(Kandasamy and Yu, 2016). This work was able to fit k-th order additive models via the use
of a specific kernel which allows a computational trick for calculating the value of the kernel
in O(k2d) time instead of the naive O(dk) time. Kandasamy and Yu (2016) finds that this
can achieve the best performance on some datasets by balancing the bias-variance tradeoff,
having less bias than 1D additive models and less variance than fully nonparametric models.
Unfortunately, the method cannot scale past several thousand samples by nature of being
a kernel machine approach (requiring O(n2k2d) time to compute the kernel matrix and
O(n3) time to compute the matrix inverse). SpAM-2 (Tyagi et al., 2016) extended the
sparse gradient approach of SpAM to fit the functional forms, using discretized variable
domains instead of kernel machines or kernel smoothing.

Neural Interaction Transparency (NIT) (Tsang et al., 2018b) uses a special neural ar-
chitecture which uses a first layer for enforcing sparsity and disentangling the interactions.
The first layer is restricted to a maximal number of nonzero entries per feature node to be
k, limiting the maximal degree of feature interactions which are possible to represent. An-
other early NAM approach which did not intentionally leverage a GAM structure is BagNet
(Brendel and Bethge, 2019). Applied to computer vision classification, this approach took
the final logits to be a sum of the local logits computed based on a small patch of the image,
showing that large enough patches from 10x10 to 30x30 achieved surprisingly competitive
performance. Sparse Shrunk Additive Model (SSAM) (Liu et al., 2020b), amongst peers
like COSSO and SALSA, focuses on the case of k = 2 and tries to incorporate additional
sparse selection into SALSA, on both the samples and the features.

The paper taking after the namesake, Neural Additive Models (NAM) (Agarwal et al.,
2021), simply replaces the nonparametric method with a neural network, but emphasizes
the many interpretability benefits of this approach (despite NAMs technically being a neural
network). A major change to the neural network is the introduction of the ExU activation
function to allow the network to capture the same sharp edges which are possible using tree
ensembles. Unfortunately, this also has the effect of greatly destabilizing the neural network
training, meaning that an ensemble of around 100 NAM networks is required to achieve good
performance. Around the same time, another approach to neural additive models called
GAMI-Net (Generalized Additive Model with Interactions Network) (Yang et al., 2021)
included pairwise interactions within the neural network structure. Although this had the
additional complexity of a stagewise, heredity-based selection procedure to choose relevant
pairs, it maintained interpretability by not pushing beyond into higher-order interactions.

Shortly after, a lot of work picked up in this direction. NODE-GAM and NODE-GA2M
(Chang et al., 2022) utilize the differentiable tree called NODE (Popov et al., 2019) as
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the nonparametric approach. This is combined with a clever ‘color gating’ mechanism to
gradually ensure the feature sparsity of each component (which then ensures the overall
GAM structure is obeyed), following a similar intuition to the gating used in NIT (Tsang
et al., 2018b). Sparse NAM (SNAM) (Xu et al., 2023) attempts to learn a sparse set of 1D
shape functions by enforcing a group parameter penalty on each of the subnetworks of a
neural additive model. Higher-Order NAM (HONAM) (Kim et al., 2022) uses a very similar
trick to SALSA in order to compute symmetric polynomials of the embeddings, using neural
network embeddings instead of kernel embeddings.

The Neural Basis Model (NBM) (Radenovic et al., 2022) is a specific type of NAM
which uses a bank of shared basis functions which are learned across all features, allowing
for repeated shape functions to be learned more easily, while still respecting the additive
GAM structure. This was done in close development with Scalable Polynomial Additive
Model (ScalPol-AM) (Dubey et al., 2022) which instead generalizes the opposite direction,
using the most simple basis function (polynomials) but adding complex higher-order in-
teractions to the model. Instead of the existing kernel ANOVA trick from SALSA, they
instead write the polynomial of degree k with weight tensor W (k) ∈ Rd⊗k

as a low-rank

approximation W (k) · x⊗k ≈
∑rk

i=1 λ
(k)
i ⟨u(k)i , x⟩k. This polynomial also has the advantage of

being easily computable and they further combine this idea with using neural basis func-
tions to compute the input features to the polynomial approach, similar to HONAM. Sparse
Interaction Additive Networks (SIAN) (Enouen and Liu, 2022) also consider higher-order
neural additive models, but instead focus on the problem of sparse selection of these inter-
actions. This requires a two-stage procedure where interactions are first chosen based on
important interactions according to an MLP and then a NAM is fit according to the chosen
interactions.

Regionally Additive Models (RAMs) (Gkolemis et al., 2023) combine the GAM struc-
ture with the nearest-neighbor simplicity bias, subdividing into patches on which the func-
tion structure obeys the simple GAM structure. Generalized Sparse Learning of Additive
Models with Interactions (G-SLAMIN) G-SLAMIN (Ibrahim et al., 2023) returns to two-
dimensional, tree-based ensembles while incorporating explicit masking variables obeying
weak or strong heredity alongside a hard cutoff threshold as chosen by hyperparameters.
AHOFM (Ruegamer, 2024) uses the factorization machine approach discussed further in the
subsection below as applied to tensor product splines to limit the consequences of higher-
order effects in large dimensions.

Optimized Regularized Stump Forests (ORSF) (Gabidolla and Carreira-Perpiñán, 2025)
reverts even further to one-dimensional, tree-based stump ensembles. They show that di-
rectly optimizing each stump alongside careful balancing of regularization hyperparameters
can outperform existing GAM-1 approaches. PatternGAM (Clark et al., 2025) corrects for
the redundancy of correlated input features by adjusting the Pattern method (Haufe et al.,
2014) used to correct for collinearity in linear regression to instead correct the concurvity
between shape functions in additive models. InstaSHAP (Enouen and Liu, 2025) instead
uses a masking-based framework to automatically correct for this redundancy in the addi-
tive model shape functions. Tensor-Product Neural Network (TPNN) (Park et al., 2025)
combines the tensor-product spline approach with the neural basis approach as in HONAM
and ScalPol-AM, while additionally requiring the Hooker purification condition ((Hooker,
2007) to be discussed in Section 4.5.3).
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Table 1: Tabulation of many GAM methods over the years

Method
Degree Generalized

Sparsity Type Nonparametric Model Year
1D 2D 3D+ reg cls other

GAM ✓ ✓ ✓ ✓ ✗ kernel smoothing 1990
SS-ANOVA ✓ ✓ ✓ ✗ spline smoothing 1993
Adaboost ✓ ✓ ✗ stump ensembles 1997

SS-ANOVA ✓ ✓ ✓ ✓ ✗ spline smoothing 2002

SUPANOVA ✓ ✓ ✓ coefficient-wise SVM 2002
LBP ✓ ✓ ✓ ✓ coefficient-wise RKHS 2004

COSSO ✓ ✓ ✓ 1D (Sobolev) RKHS 2006
SpAM ✓ ✓ ✓ 1D (functional) kernel smoothing 2008
HDAM ✓ ✓ ✓ 1D (sparse-smooth) RKHS 2009

GAM ✓ ✓ ✓ ✗ tree ensembles 2012
GA2M ✓ ✓ ✓ ✓ pairs, stagewise tree ensembles 2013
EBM ✓ ✓ ✓ ✓ pairs, stagewise tree ensembles 2015

SALSA ✓ ✓ ✓ ✓ k-D (functional) kernel machines 2016
SpAM2 ✓ ✓ ✓ pair selection discretized 2016

NIT ✓ ✓ ✓ ✓ ✓ HO, online (neural-based) neural 2018
BagNet *✓ ✓ ✗ neural 2019
SSAM ✓ ✓ ✓ coefficient-wise kernel machines 2020

GAMI-Net ✓ ✓ ✓ ✓ pairs, stagewise neural 2021
NAM ✓ ✓ ✓ ✗ neural 2021

NODE-GAM ✓ ✓ ✓ ✓ pairs, online (tree-based) differentiable trees 2022
SNAM ✓ ✓ ✓ pairs, online (group norm) neural 2022

HONAM ✓ ✓ ✓ ✓ ✓ FM-style neural bases 2022
ScalPol-AM ✓ ✓ ✓ ✓ ✓ FM-style polynomials 2022

NBM ✓ ✓ ✓ ✗ neural bases 2022
SIAN ✓ ✓ ✓ ✓ ✓ higher-order selection neural 2022

G-SLAMMIN ✓ ✓ ✓ ✓ pairs, online (indicators) differentiable trees 2023
AHOFM ✓ ✓ ✓ ✓ FM-style spline bases 2024

ORSF ✓ ✓ ✓ ✗ stump ensembles 2025
TPNN ✓ ✓ ✓ ✓ ✓ FM-style neural bases 2025

FM ✓ ✓ FM-style factorization machine 2010
HIFM ✓ ✓ FM-style linear factorization 2014
HOFM ✓ ✓ ✓ FM-style factorization machine 2016

OptFeature ✓ ✓ ✓ GAM- and FM-style factorization machine 2023

GAM-GP ✓ ✓ ✗ gaussian process 2013
KANOVA GP ✓ ✓ ✓ ✓ kernel cross terms gaussian process 2016

OAK ✓ ✓ ✓ ✗ gaussian process 2022
NAM-LSS ✓ ✗ parametrized distribution 2024

In addition to these works on the ‘main’ line of research into additive models, there are
other key directions of research which are closely related to additive models. First is the
research into uncertainty using GAMs. Although GAMs are typically shown alongside their
bagged intervals giving some notion of a confidence interval, much more serious notions
of uncertainty exist using Gaussian processes or Bayesian approaches. Additionally, there
is the large amount of research into Factorization Machines (FMs) which are very closely
related to additive model structural assumptions. The biggest difference can be seen in the
implicit assumption in the FM domain that input features are themselves high-dimensional
(rather than the number of input features as in high-dimensional GAMs).
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4.3.1 GAM Uncertainty

Many different approaches have incorporated GAM structure into uncertainty estimation
or added uncertainty to GAM predictions. The Generalized Additive Models for Location,
Scale, and Shape (GAM-LSS) (Rigby and Stasinopoulos, 2005) is an approach for distribu-
tion modeling which makes great use of the ‘generalized’ aspected of generalized additive
models, modeling a wide variety of parametrized distributions from normal and logistic
to Box-Cox and Poisson. This approach allows for conditional uncertainty to be directly
modeled via the modeling of the target distribution.

Additive Gaussian Processes (Duvenaud et al., 2011), or the nearly equivalent Additive
Kriging (Durrande et al., 2011), followed up on previous works in hierarchical kernel learning
(Bach, 2009) and Gaussian process Sobol indices (Marrel et al., 2009), respectively, to
deliver the Gaussian process obeying the additive assumption of the GAM. Further works
looking at using kernel-based functional ANOVA extensions to additive Gaussian processes
and general Gaussian processes (Ginsbourger, 2013; Duvenaud, 2014) as well as specially
designed Kernel ANOVA (Ginsbourger et al., 2016) which can further decompose into 4d

terms by nature of each 2d · 2d cross-terms contributing to the kernel.
This work would pick up later with a modernization of OAK (Lu et al., 2022) which

combined modern sparse GP approaches with the additive GP assumption; (Luo et al.,
2022) would develop a similar extension around the same time. Max-Mod (López-Lopera
et al., 2022) would also revisit the additive GP assumption, also providing support for
monotonicity constraints.

Other approaches to uncertainty would lean more heavily on Bayesian idealogy, with
SKIM-FA (Agrawal and Broderick, 2023) extending their linear kernel interaction trick
(Agrawal et al., 2019) which applies an additive assumption directly on the kernel along-
side hierarchical Bayesian modeling. NAM-LSS (Frederik Thielmann et al., 2024) would
extend NAM approaches to the location, scale, and shape modeling of GAM-LSS. LA-
NAM (Bouchiat et al., 2024) learned an independent Bayesian NN for each of the additive
components of the NAM.

4.3.2 Factorization Machines

Another important model closely related to the additive model and another type of com-
monly studied interaction selection is the Factorization Machine (FM) (Rendle, 2010). This
approach extends existing Matrix Factorization (MF) (Bell et al., 2008) approaches which
are used under cases of extreme sparsity like in the Netflix problem of matching users to
movies (Bennett and Lanning, 2007; Bell et al., 2010). In the original FM, first a multi-
linear assumption and a GAM-2 assumption are made resulting in the Equation 63. The
parameters are the w∅ ∈ R scalar, the w⃗ ∈ Rd vector, and the W ∈ Rd×d matrix. For
large d, there may be insufficient data to adequately fit the quadratic O(d2) number of
coefficients in W . Accordingly, it is fit using a low-rank approximation W ≈ V V T for
some V ∈ Rd×r. This results in the FM equation in Equation 64 after the appropriate
adjustments for symmetrizing W and removing the quadratic terms x2i .

fbilinear(x) = w∅ +

d∑
i=1

wixi +

d∑
i=1

d∑
j=1

Wi,jxixj (63)
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fFM(x) = w∅ +
d∑

i=1

wixi +
d−1∑
i=1

d∑
j=i+1

⟨v⃗i, v⃗j⟩xixj (64)

where v⃗i ∈ Rr for each i ∈ [d] represent the rows of V .
Later work like FHIM (Purushotham et al., 2014) add additional sparsity on the vectors

w⃗ and v⃗i to compensate for high-dimensional data. They additional suggest the possibility
of generalizing to higher-order feature interactions. In 2016, HOFM (Blondel et al., 2016)
actually explores the higher-order factorization machine, decomposing the higher-degree
tensors like W (3) ∈ Rd×d×d using the CP decomposition (Chang, 1970; Harshman, 1970) of

these tensors W
(3)
i,j,k ≈

∑r3
r=1 v⃗

(3)
i,r · v⃗(3)j,r · v⃗(3)k,r as seen in Equation 66.

fmultilinear(x) = w∅ + W (1) ⊙ x⃗ + W (2) ⊙ (x⃗⊗ x⃗) + · · · + W (k) ⊙ x⃗⊗k (65)

fHOFM(x) = w∅ +
d∑

i=1

wixi +
d−1∑
i=1

d∑
j=i+1

⟨v⃗(2)i , v⃗
(2)
j ⟩ · xixj+

· · · +
∑

i1<···<ik

⟨v⃗(k)i1
, . . . , v⃗

(k)
ik

⟩ · xi1 . . . xik (66)

where we abuse the Hadamard product notation (⊙) to also mean collapsing to a scalar
and the notation ⟨v⃗1, . . . , v⃗k⟩ is the extended dot product agreeing with the above low-
rank (CP) formula. Note again that the multilinear assumption is notationally tedious
to write, either requiring that we write the explicit sum over strictly increasing indices
or requiring the awkward condition that each W (k) tensor only has nonzero entries for
completely asymmetric entries. Accordingly, we write Equation 65 as the easier to write
polynomial in tensor products with the understanding that these weight tensors may need
to be further restricted as appropriate.

Around this time, two works claiming to be Sparse Factorization Machines (SFMs) (Xu
et al., 2016) and (Pan et al., 2016), add additional sparsity to the bilinear factorization
machine to better deal with the high-dimensional setting. (Pan et al., 2016) follows a
similar approach to (Purushotham et al., 2014), focusing on entry-wise sparsity of the
parameters. They replace the sparse Gaussian approach from (Purushotham et al., 2014)
with a Laplacian distribution and make the many necessary adjustments in methodology.
(Xu et al., 2016) instead aims for sparsity on the individual feature pairs, regularizing the
rows of the V1 and V2 matrices of fSFM(x) = xTV1V

T
2 x with the ∥ · ∥2,1 norm on V1 and V2.

This norm encourages groupwise sparsity on each row of the decomposition matrix, allowing
unnecessary features to be easily dropped out of the FM interaction representation.

It is additionally worth noting how closely related the factorization machine approach is
to several higher-order attempts at extending GAMs. HONAM (Kim et al., 2022), ScalPol-
AM (Dubey et al., 2022), and AHOFM (Ruegamer, 2024) all use nonlinear basis functions
outside of the multilinear approach to be able to extend the representation capabilities of
FMs for continuous variables (either neural bases or spline bases). It is worth noting that
this is often one of the key distinguishing factors between these nearby but parallel research
directions. Due to the fact that FMs are usually applied to high-dimensional, categorial
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variables with one-hot encodings, the assumption of bilinearity is not actually a restriction.
In the case of continuous variables, this is no longer the case. Another key difference is the
mindset: factorization machines are making this simplifying assumption because it achieves
the best performance on the challenging high-dimensional task; additive models are making
this simplifying assumption because it provides clear insight into the data.

Accordingly, many follow-up works to FM and HOFM are only focused on achieving
the best performance, no matter the benefits or detriments to interpretability. We include
these works regardless for completeness. Meta-graph FMG (Zhao et al., 2017) appends
additional knowledge graph features before applying a regularized FM structure. IAFM
(Hong et al., 2019) modifies the FM with a courser field-level field aspect as well as an
attention mechanism, and this work also consider neural network extensions for learning
higher-order interactions. AutoInt (Song et al., 2019) focuses specifically on an interacting
attention structure to implicitly learn higher-order factorization machine structure. Aut-
oFIS (Liu et al., 2020a) uses a higher-order interaction structure of HOFM alongside the
neural network tricks of batch normalization and gating. GILDER 2020 (Tsang et al.,
2020a) first runs a neural interaction detection procedure before retraining on an expanded
set of cross features. TI and CS regularized FMs (Atarashi et al., 2021) introduce alternate
sparse regularization approaches to better enable groupwise sparsity and interaction selec-
tion. AutoAIS (Wei et al., 2021) uses a meta architecture search across deep architectures
for the embedding and interaction structure. AdaFS (Lin et al., 2022) uses a small MLP
alongside mixed soft and hard selection to implicitly discover all higher-order interactions.

A major departure from this push towards neural factorization machines is the work
on hybrid-grained interaction selection (Lyu et al., 2023). In this work, they make a clear
distinction between the coarse-grained, field-level interactions and the fine-grained, value-
level interactions being modeled by a factorization machine. In this language, the interaction
selection of additive models corresponds to selection at the coarse-grained level. They
combine both levels of interaction selection into a model they call OptFeature. Their work
also considers ablating both level of interaction selection as well as the extension to 3rd
degree interactions. Overall, this fine-grained perspective allows for an easier understanding
of the key difference between GAM and FM interactions.

4.4 Feature Interaction Selection

Now that we have gone over the many different types of feature interaction detection and
additive models, we dedicate this section to clarify the different types of feature interaction
selection. The first versions of feature interaction selection were only referring to interactions
in the sense of the low-order pairwise interactions. Another popular version of interaction
selection is in the sense of factorization machines which use matrix factorizations to represent
interaction terms. The more general higher-order interaction selection is what we will refer
to as feature interaction selection, operating at the coarse-grained level of the additive
model.

4.4.1 Pairwise Interaction Selection

First attempts at interaction selection were selection amongst singles and pairs of features
I ⊆ I≤2 := {S : S ⊆ [d], |S| ≤ 2}. This was originally done for the selection of linear and

41



Enouen and Liu

bilinear coefficients in a simple bilinear model as in Equation 67. This was done by early
works like efficient heredity (Yuan et al., 2007, 2009), CAP (Zhao et al., 2009), SHIM (Choi
et al., 2010), and hierarchical lasso (Bien et al., 2013).

f(x) = β∅ +
∑
i∈I1

βixi +
∑

(i,j)∈I2

βijxixj (67)

This setting later continued to be expanded on with even further guarantees in ultra-high-
dimensional settings using the iFOR algorithm (Hao and Zhang, 2014b) and the SIRI algo-
rithm (Kong et al., 2017).

4.4.2 Interaction Order Selection

Another important special case is degree selection or order selection. This selects the highest
order or the highest degree of the GAM model. That is, choosing the optimal k amongst
k = 1, 2, . . . , d so that the GAM-k model will be the best performing.

f≤k(x) =
∑
|S|≤k

fS(xS) (68)

Historically speaking, it was quite popular for people to automatically do this by select-
ing a model of degree 1 or 2 which corresponded to the best nonparametric model of those
times. Works would later codify the statistical intuition that additive models break the
curse of dimensionality by providing the nonparametric convergence rates for these models
(Stone, 1985; Andrews and Whang, 1990; Chen, 1991b). These works came from work in
the larger areas of series estimators and sieve methods (Newey, 1997; Chen, 2007) which
focus on giving statistically valid but sufficiently flexible nonparametric estimators.

4.4.3 Fine-Grained Interaction Selection

Another important type of interaction selection is the selection of ‘fine-grained’ interactions
either through the use of a factorization machine (Rendle, 2010; Blondel et al., 2016) or
matrix factorization (Bell et al., 2008). This applies to problems where the individual
variables dimensions xi may themselves be high-dimensional (usually discrete variables with
many possibilities like user ID). Recall that an FM will model an interaction between i and
j on onehot features xi ∈ Rdi and xj ∈ Rdj via Vi ∈ Rr×di and Vj ∈ Rr×dj :

fFM(xi, xj) = (V T
i Vj)⟩ · (xi ⊗ xj) (69)

which is different from fitting an arbitrary nonparametric function on the onehot features:

f(xi, xj) = W · (xi ⊗ xj) (70)

Although linearized matrix factorizations are the only method which is widely used for
fine-grained feature interaction selection, it can be imagined that other techniques for this
problem could also be approached. The importance of handling both the coarse-grained
interaction selection as described in the next section and the fine-grained interaction selec-
tion as described in this section has also been explored before in a hybrid approach called
OptFeature (Lyu et al., 2023).
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4.4.4 Feature Interaction Selection (Higher-Order)

Finally, we discuss feature interaction selection in its full generality as a problem of selecting
from all possible higher-order interactions, choosing an entire collection I ⊆ P([d]) from all
2d possible feature subsets (Sugiyama and Borgwardt, 2019; Enouen and Liu, 2022).

fI(x) =
∑
S∈I

fS(xS) (71)

Compared with the other versions of interaction selection, this higher-order feature inter-
action selection results in a doubly-exponential combinatorial problem, choosing from an
extremely rich but numerous set of candidate I collections.

Unlike high-dimensional statistics, which is mainly applied to specific domains like bio-
statistics (where d ≫ n often holds), feature interaction selection is more widely applicable
across machine learning tasks (since 2d ≫ n more commonly holds), especially in the ever-
increasing presence of high-dimensional data. It is this property which we will refer to as
medium-dimensional statistics or medium dimensionality. Even for relatively small dimen-
sion such as d = 20 or d = 30, one will quickly face statistical limitations due to the fact
that 2d = 1.0e6 or 2d = 1.1e9 is often much larger than n, the sample size.

4.5 Modern Topics

Given the long history and many varieties of additive models we discussed throughout this
section, we now close with a focus on some of the topics which have attracted attention in
the modern iteration of study. Of course additive models are first and foremost a predictive
tool and thus any improvement on the set of methods available for quickly training accurate
GAM models is always of continued interest. In this subsection we instead go into greater
detail on the more nuanced research questions about generalized additive models, especially
with respect to their position as an interpretable machine learning model.

Of great importance are questions relating to how interpretable and how robust the
insights learned by additive models are. Furthermore questions about how to incorporate
domain knowledge, fine-grained structure, geometric symmetries, and other problem-specific
structure into the assumptions of the GAM model remain important in domain application.
Questions about the underlying correlation structure of the input variables drive many of
these other questions. Finally, extensions which combine additive principles with other
principles like the logical pillar and the concept pillar look like promising directions for
balancing interpretability with good performance.

4.5.1 Interpretability of GAMs

A major question in the usage of GAMs is ‘How interpretable are GAMs, really?’ Al-
though an individual GAM is fundamentally interpretable because we can inspect its shape
function, this ignores extraneous considerations to how we interpret those shape functions.
Questions like robustness (would we get the same shape functions with slightly different
data or models?), sparsity (are there few enough shape functions to reasonably look at
all of them?), correlations (are certain variables and shape functions carrying redundant
information about the target?), and causality (when can we interpret the shape functions
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as saying something causal about the relationship?) are critical for contextualizing the
interpretability of GAM models.

Robustness The robustness of the GAM-provided explanation of the data is directly
dependent on the robustness of the GAM model itself. (Chang et al., 2021) explores in
detail how even using different nonparametric methods to fit the shape functions can lead to
significantly different results. This is further shown to have direct implications for algorithm
fairness through varying importance and polarity of sensitive attributes. (Enouen and Liu,
2025) has shown how even a fixed model class (neural additive models) can have very wide
variance under typical GAM training procedures, mainly as a consequence of correlated
features. (Schulte and Rügamer, 2025) shows that the training of boosted additive models
follow a implicitly regularized gradient descent path, mainly leading to shrinkage of the
estimated effect.

Sparse Explanations Another key point in interpreting shape functions is the require-
ment of actually looking at all shape function plots. Although manageable but tedious for
10-100 shape functions, this problem can become out of hand for too many shape functions
(especially when utilizing interactions). COGAM (Abdul et al., 2020) proposes to repur-
poses sparse additive models specifically for this purpose of easier interpretation, further
utilizing linear coefficients in the cases where shape functions are close to linear. Of course,
requiring increasingly sparse GAM models to allow for interpretability is in conflict with the
goal of predictive accuracy, and thus must be balanced for the targeted application. (Zhong
et al., 2023) takes the alternate approach of finding the ‘Rashomon set’ of sparse additive
models, meaning the collection of nearly-optimal-performing sparse models. Although this
catches the many alternate feature subsets which are deemed important by sparse additive
models, it once again significantly raises the cognitive load. Moreover, these sparse effects
may only be conflations between correlations between equally predictive features.

Correlated Effects There is a major weakness in GAM interpretations when applied
to distributions with heavily correlated features. When considering a dataset which has
two copies of the same feature, the GAM model can divide the shape function between
the two copies in completely arbitrary ways. The robust solution would give half of the
weight to each whereas a sparse solution would give all of the weight to only one. This
issue is generally referred to as concurvity in GAMs (Ramsay et al., 2003; Siems et al.,
2023; Zhang et al., 2025). This fundamental conflict between robustness and sparsity in
the correlated setting poses many practical challenges for using GAM models. This is
only further complicated by the common misinterpretation that GAM shape functions are
indicative of causal relationships.

Causal Interpretations There is a well-known bias to interpret shape function plots as
describing the causal influence which a feature has on the target, rather than the predictive
influence which the feature has on the target. This is often natural in many tasks where
the outcome does causally depend on the input features; however, it can easily lead to
misinterpretations of the GAM model. For instance, it could be the case that most of
the shape function is truly causal; however, a portion of the shape function actually is
because of a second feature which is correlated with the first. This has led to no shortage of
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misinterpretations and there are no obvious solutions in sight, leaving this as another open
topic of modern GAM research.

4.5.2 Correlations and Dependencies

The correlations amongst the input variables pose a fundamental challenge to the study of
additive models.

I went into researching additive models thinking that interactions would be the
hard part, but I came out knowing that correlations... they are from the devil.

Rich Caruana

Applying linear regression to linearly related features has long been known to lead to
unstable results with uninterpretable coefficients, a problem called colinearity. As already
mentioned, in the extreme case of duplicated features, coefficients are no longer well-defined
and require the implicit or explicit regularization of the learning algorithm to even be unique.
Although common practice when constructing features may be to drop the redundant copy
or when fitting models to use ridge regression (Hoerl and Kennard, 1970b,a), entire books
are dedicated to identifying and resolving the problems induced in linear regression for
predefined features (Belsley et al., 2005). Further approaches trying to improve the stability
or interpretability of linear regression in these settings continue to the current day (Wold
et al., 1984; Kejian, 1993; Haufe et al., 2014; Pazzani and Bay, 2020).

Given that there has yet to be a completely satisfactory resolution in the simple case
of linear regression, it is no surprise that this remains an active topic in the research of
additive models. In the space of GAMs, the issue of colinearity is replaced by the issue
of concurvity, due to the fact that each of the shape function curves may be nonlinearly
influenced by not only the linear correlations between two underlying features, but the
higher-order dependencies between the two features. Although this usual refers to the case
of 1D GAMs, the issue is widespread for both higher-order dependencies and for higher-order
interaction models.

Moreover, the issue of concurvity is directly problematic for the goals of robust, sparse,
and causal explanations. The robustness of the fitted shape functions can be ruined by
redundant information in the features and the sparsity of the fitted shape functions contra-
dicts the robust fit which aggregates noisy sources of the same information. The ability to
causally interpret shape function plots is further befuddled by the dependencies which in-
terlock several different shape functions as illustrating a single joint phenomenon. Although
the lack of universal solution in the simple linear regression case should pose as a warning
of its difficulty, the importance of this issue for interpreting GAMs is hard to overstate and
only made more important by the modern era of deep learning on high-dimensional and
correlated raw features.

Correlation-Adapted GAMs Many works have made progress on improving the ro-
bustness of GAMs under these more realistic settings. (Lengerich et al., 2020) provides an
algorithm for purifying higher-order shape functions, allowing for a unique interpretation
of equivalent GAM models. (Sun et al., 2022) directly solve for purified GAMs on discrete
features by the usage of a ‘pure coding’ function. (Zhong et al., 2023) looks at taking the
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entire family of well-performing sparse additive models, called the Rashomon set (Xin et al.,
2022). This allows for considering an explanation as a set of sparse explanations, where the
large set of models allows for robustness, the sparsity of the individual models prevents the
overall Rashomon set from becoming too uninterpretable. (McTavish et al., 2024) asks the
question of whether or not the missingness indicator should be grouped with its respective
feature or be treated as its own feature, noting that missingness may itself be correlated
with other features.

(Siems et al., 2023) suggests minimizing the concurvity of GAMs by directly optimizing
it in terms of minimizing the correlation coefficients.

Lconcurvity(f1, . . . , fd) :=
∑
i<j

∣∣∣Corr(fi, fj)
∣∣∣ =

∑
i<j

∣∣∣ Cov(fi, fj)√
Var(fi)

√
Var(fj)

∣∣∣ (72)

(Enouen and Liu, 2025) suggests directly regularizing according to masking the shape
functions under the Shapley kernel distribution, m(S) from Equation 11.

argmin
f∅,f1,...,fd

{ ∑
S⊆[d]

m(|S|) · EX

[(
f(X) − f∅ −

∑
i∈S

fi(Xi)
)2

]}
(73)

(Clark et al., 2025) suggests that in scenarios where the target Y generates the features
X, it is preferable to only have shape functions which directly correlated with Y . They
follow the intuition of the PatternQLR method (Haufe et al., 2014) to linearly adjust shape
functions to be maximally predictive of Y .

fPattern
i = bifi + di fPattern

i,j = bi,jfi,j + di,j (74)

where bS , dS = argmin
b,d∈R

{
Loss(Y ; b · f(X) + d)

}
Ironically enough, the additive model has also surprisingly proved to be a great tool for

better understanding the correlation structures of the data. It does this by distinguishing
specifically what is not a feature interaction. By considering the spectrum across all addi-
tive models, we can begin to identify which features are redundantly predictive and which
features are synergistically predictive of the target. For more information, see the Amari
decomposition in the next section or see (König et al., 2025; Enouen and Liu, 2025).

4.5.3 Generalized Functional ANOVA

Sobol’-Hoeffding ANOVA Due to the realized failings of the original functional ANOVA,
now called the Sobol-Hoeffding ANOVA (Hoeffding, 1948; Sobol’, 1990), additional func-
tional ANOVA decompositions were developed for beyond the case of independent variables.
It is worth mentioning that it is not always clear whether to say Sobol-Hoeffding refers to
the marginal ANOVA decomposition or the conditional ANOVA decomposition because
of Sobol’s use of the assumption that the variables were independent; however, we will
equate it with the conditional ANOVA as we feel is fairly common throughout the liter-
ature. This then means that we have the baseline ANOVA, the marginal ANOVA, the
conditional ANOVA = the Sobol-Hoeffding ANOVA, and then we will discuss two more
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functional ANOVAs: the Stone-Hooker ANOVA and what we will call herein the Amari
ANOVA.

f(x) =
∑
S⊆[d]

fSobol
S (xS) where fSobol

S (xS) :=
∑
T⊆S

(−1)|S|−|T |[MT ◦ f ](xS) (75)

Stone-Hooker ANOVA Hooker (Hooker, 2004), in his study on additive structure in
blackbox functions, had already discovered Sobol’s functional ANOVA decomposition. He
was also aware of the key limitations in using this decomposition in the case of dependent
variables, so later based on the work of Stone (Stone, 1994) for orthogonalizing tensor prod-
uct bases, he would use the same functional ANOVA decomposition for arbitrary functions
and provide novel estimation approaches (Hooker, 2007). This Stone-Hooker decomposition
was a large step towards having a functional ANOVA decomposition which remains useful
in the case of dependent input variables.

f(x) =
∑
S⊆[d]

fHooker
S (xS) s.t. [MS−s ◦ fHooker

S ](xS−s) = 0 ∀xS−s ∀s ∈ S ∀S (76)

Mara and Tarantola (2012) had also identified issues with applying the typical Sobol
indices in the case of dependent input variables. Recall that the Sobol variances (the typical
indices) and the Sobol covariances are defined as:

V Sobol
S := Var

[
fSobol
S

]
= EXS

[
fSobol
S (XS)2

]
(77)

CSobol
S := Cov

[
fSobol
S , f

]
= EX

[
fSobol
S (XS) · f(X)

]
(78)

Chastaing et al. (2012) revisits the Stone-Hooker decomposition and suggests to consider
the Hooker covariances as a new Sobol index, where the Hooker variances and Hooker
covariances are defined in the obvious way. They would reintroduce the matrix form of the
projection equations for the small two-dimensional case and later follow ups would continue
exploring this direction (Chastaing and Gratiet, 2015; Chastaing et al., 2015).

V Hooker
S := Var

[
fHooker
S

]
= EXS

[
fHooker
S (XS)2

]
(79)

CHooker
S := Cov

[
fHooker
S , f

]
= EX

[
fHooker
S (XS) · f(X)

]
(80)

Amari ANOVA Most recently, some recent approaches have completely embraced the
connection with additive models and alternatively considered the trained (ordered-selected)
additive models as defining the functional ANOVA decomposition, rather than the historical
use of the functional ANOVA as a proxy for selecting additive terms (König et al., 2025;
Enouen and Liu, 2025). We will herein call this ANOVA approach the Amari decomposition
in reference to his similar decomposition of a probability distribution using the Riemannian
geometry of statistical manifolds (Amari, 2001).
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{fAmari
S }|S|=k = argmin

{gS}

{
EX

[(
f(X) −

∑
|S|<k

fAmari
S (XS) −

∑
|S|=k

gS(XS)
)2]}

(81)

∀k ∈ {0, 1, . . . , d}

König et al. (2025) uses this approach to be able to better decompose the full variance
of a blackbox model, aiming to disentangle the variance which is coming from the synergies
between two features and which is coming from the dependencies between two features. In
order to do this, they directly fit a GAM model fj(xj) + f−j(x−j) to the data, bypassing
non-uniqueness considerations with the variational formulation. Enouen and Liu (2025)
additionally consider generalizing this variational approach to any possible higher-order
additive model, providing the matrix-projection equations which characterize the solution
to the variational problem (their Theorem 6).

4.5.4 Extensions Beyond Additive Models

Regional GAMs and Instance-wise Sparsity A large and important direction of ex-
tending additive models is the study of regionally additive models and localized sparse
interactions. Regional additive models (Gkolemis et al., 2023), consider generalized addi-
tive models where certain interaction terms only exist within certain regions of the input
space. This allows for much greater modeling flexibility while still having a semilocal GAM
approximation to the model. This interpretable-by-design model type depends on their be-
ing relatively few regions, and generally trades between region complexity and interaction
complexity. It is reminded that regionally additive models are a combination of the additive
pillar with the locality of the concept pillar (and sometimes the anchors of the reasoning
pillar), recall Figure 3.

This approach can be seen as the interpretable-by-design dual concept to region-specific
additive explanations like REPID (Herbinger et al., 2022) and GADGET (Herbinger et al.,
2024) which focus on providing effect plots which are regionally interaction-free. Moreover,
this is part of a larger trend to increase explanation flexibility through the use of instance-
wise sparsity. Although even looser than regional sparsity (with each data point receiving
its own region), these methods still seem fundamentally connected. TabNet (Arik and Pfis-
ter, 2021) has local feature selection sparsity which may depend on all of the features (i.e.
selecting the region), but the final prediction step will be dependent on those individual
features (i.e. locally sparse model). Sum-of-Parts (You et al., 2025) provides an interaction
attribution for natural images where the interaction sparsity pattern depends on the indi-
vidual sample, again providing an explanation which is regionally an additive interaction
explanation.

Pretrained Transformers Although tabular data has been traditionally dominated by
boosting methods from machine learning (Shwartz-Ziv and Armon, 2022; McElfresh et al.,
2023; Borisov et al., 2024), a recent departure from this trend is the work of TabPFN
(Hollmann et al., 2023). TabPFN uproots the usual deep learning pipeline by training a
transformer to map directly from a dataset to a test prediction, which enables pretraining
on a large corpus of synthetic tabular data. This raises questions about the future of
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machine learning and whether the traditional paradigms of fitting a single model to a
single dataset are still relevant in the post-LLM, post-pretraining landscape of artificial
intelligence. TabPFN points out that even the simple and ubiquitous tabular data is not
immune to having larger patterns across different datasets which are detectable by deep
learning. GAMformer (Mueller et al., 2026) asks whether or not these globally learned
patterns by a large-scale transformer can still be locally understood after fixing the training
dataset. In particular, they train a TabPFN model which returns a 1D GAM model in
terms of its predictions on new test samples.

Additional Hierarchies, Structures, and Geometries The incorporation of addi-
tional structure is absolutely critical for GAMs extensions attempting to perform well be-
yond the setting of tabular data with simple and interpretable features. Domains like
natural language and computer vision, as well as data types like longitudinal data and
graphical data require additional caution for additive modeling to be as useful as possible.
Although basic modifications like grouping spatial coordinates, considering time as a distin-
guished features, or grouping missingness indicators with features have long been standard
practice, these methods are not universally understand nor without nuance in their applica-
tion. For example, the hyperbolic structure of word hierarchies and image label categories
(Nickel and Kiela, 2017; Khrulkov et al., 2020; Ermolov et al., 2022), the autocorrelation
structure of time series data (Whittle, 1951; Box et al., 1970), the connectivity structure of
graphical data (Chung, 1997; Page et al., 1999; Perozzi et al., 2014; Kipf, 2016; Grover and
Leskovec, 2016), or the fine-grained hierarchy structure of high-dimensional embeddings
(Rendle, 2010; Lyu et al., 2023).

HCI Integration and Causal Insight As an interpretable method, it is also important
to understand how GAMs are being interpreted and integrated into larger human-in-the-
loop systems. Moreover, it is important to understand the heterogeneity of applications
and their respective demands. This human-computer interaction (HCI) should always be
considered as an extension of the GAM itself, and interpretability claims must be factored
through the relevant application at hand (Bellotti and Edwards, 2001; Kaur et al., 2020).

Interpreting the claims of the GAM mdoel causally is amongst the most abundant
of mistakes made by practitioners and non-experts alike, begging for methods which can
automatically understand the contextually relevant causal claims and/or process external
causal assumptions into the overall pipeline. In many cases, understanding the interpretable
insights of the GAM in a causal light may be critical for downstream actionability of the
insights (Workshop on Actionable Interpretability @ ICML 2025). Although causality is
infamous for its difficulty and nuance, many works are already beginning to make progress
on utilizing causal assumptions to be incorporated into additive attribution (Biparva and
Materassi, 2024; Gajewski et al., 2025).
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Karen Chan, Andrea Saltelli, and Stefano Tarantola. Sensitivity analysis of model output:
variance-based methods make the difference. In Proceedings of the 29th Conference on
Winter Simulation, WSC ’97, page 261–268, USA, 1997. IEEE Computer Society. ISBN
078034278X. 10.1145/268437.268489. URL https://doi.org/10.1145/268437.268489.

Chun-Hao Chang, Elliot Creager, Anna Goldenberg, and David Duvenaud. Explaining
image classifiers by counterfactual generation. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=B1MXz20cYQ.

Chun-Hao Chang, Sarah Tan, Ben Lengerich, Anna Goldenberg, and Rich Caruana. How
interpretable and trustworthy are gams? In Proceedings of the 27th ACM SIGKDD Confer-
ence on Knowledge Discovery & Data Mining, KDD ’21, page 95–105, New York, NY, USA,
2021. Association for Computing Machinery. ISBN 9781450383325. 10.1145/3447548.3467453.
URL https://doi.org/10.1145/3447548.3467453.

Chun-Hao Chang, Rich Caruana, and Anna Goldenberg. NODE-GAM: Neural generalized
additive model for interpretable deep learning. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=g8NJR6fCCl8.

J. Douglas Carroll & Jih-Jie Chang. Analysis of individual differences in multidimensional
scaling via an n-way generalization of “eckart-young” decomposition, 1970.

A. Charnes, B. Golany, M. Keane, and J. Rousseau. Extremal Principle Solutions of
Games in Characteristic Function Form: Core, Chebychev and Shapley Value Generaliza-
tions, pages 123–133. Springer Netherlands, Dordrecht, 1988. ISBN 978-94-009-3677-5.
10.1007/978-94-009-3677-57.URL.

G. Chastaing and L. Le Gratiet. Anova decomposition of conditional gaussian processes
for sensitivity analysis with dependent inputs. Journal of Statistical Computation and
Simulation, 85(11):2164–2186, 2015. 10.1080/00949655.2014.925111.

G. Chastaing, F. Gamboa, and C. Prieur. Generalized sobol sensitivity indices for depen-
dent variables: numerical methods. Journal of Statistical Computation and Simulation, 85
(7):1306–1333, 2015. 10.1080/00949655.2014.960415.

Gaelle Chastaing, Fabrice Gamboa, and Clémentine Prieur. Generalized Hoeffding-Sobol
decomposition for dependent variables - application to sensitivity analysis. Electronic
Journal of Statistics, 6(none):2420 – 2448, 2012. 10.1214/12-EJS749. URL https:

//doi.org/10.1214/12-EJS749.

Siu Lun Chau, Robert Hu, Javier Gonzalez, and Dino Sejdinovic. RKHS-SHAP: Shap-
ley values for kernel methods. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=gnc2VJHXmsG.

55

https://doi.org/10.1145/268437.268489
https://openreview.net/forum?id=B1MXz20cYQ
https://doi.org/10.1145/3447548.3467453
https://openreview.net/forum?id=g8NJR6fCCl8
https://doi.org/10.1007/978-94-009-3677-5_7
https://doi.org/10.1214/12-EJS749
https://doi.org/10.1214/12-EJS749
https://openreview.net/forum?id=gnc2VJHXmsG


Enouen and Liu

Siu Lun Chau, Krikamol Muandet, and Dino Sejdinovic. Explaining the uncertain: Stochas-
tic shapley values for gaussian process models. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Pro-
cessing Systems, volume 36, pages 50769–50795. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/9f0b1220028dfa2

ee82ca0a0e0fc52d1-Paper-Conference.pdf.

Chaofan Chen and Cynthia Rudin. An optimization approach to learning falling rule
lists. In Amos Storkey and Fernando Perez-Cruz, editors, Proceedings of the Twenty-First
International Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings
of Machine Learning Research, pages 604–612. PMLR, 09–11 Apr 2018. URL https:

//proceedings.mlr.press/v84/chen18a.html.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su.
This looks like that: Deep learning for interpretable image recognition. In H. Wallach,
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Neural additive models for location scale and shape: A framework for interpretable neural
regression beyond the mean. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li, editors,
Proceedings of The 27th International Conference on Artificial Intelligence and Statistics,

59

http://www.jstor.org/stable/2289218
https://proceedings.neurips.cc/paper_files/paper/2022/file/5a3674849d6d6d23ac088b9a2552f323-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/5a3674849d6d6d23ac088b9a2552f323-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/5a3674849d6d6d23ac088b9a2552f323-Paper-Conference.pdf
https://openreview.net/forum?id=ky7vVlBQBY
http://www.jstor.org/stable/2345576
http://www.jstor.org/stable/2345576
https://ideas.repec.org/b/elg/eebook/1489.html
https://ideas.repec.org/b/elg/eebook/1489.html
http://dx.doi.org/10.3934/fods.2024021
http://dx.doi.org/10.3934/fods.2024021
https://api.semanticscholar.org/CorpusID:1633753


Enouen and Liu

volume 238 of Proceedings of Machine Learning Research, pages 1783–1791. PMLR, 02–04
May 2024. URL https://proceedings.mlr.press/v238/frederik-thielmann24a.html.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of computer and system sciences, 55(1):119–139,
1997.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors). The annals
of statistics, 28(2):337–407, 2000.

Jerome H. Friedman. Multivariate Adaptive Regression Splines. The Annals of Statistics,
19(1):1 – 67, 1991. 10.1214/aos/1176347963. URL https://doi.org/10.1214/aos/1176

347963.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The
Annals of Statistics, 29(5):1189–1232, 2001. ISSN 00905364, 21688966. URL http:

//www.jstor.org/stable/2699986.

Jerome H. Friedman. Stochastic gradient boosting. Computational Statistics & Data Anal-
ysis, 38(4):367–378, 2002. ISSN 0167-9473. https://doi.org/10.1016/S0167-9473(01)00065-
2. URL https://www.sciencedirect.com/science/article/pii/S0167947301000652.
Nonlinear Methods and Data Mining.

Jerome H Friedman and Bogdan E Popescu. Predictive learning via rule ensembles. The
Annals of Applied Statistics, pages 916–954, 2008.

Jerome H. Friedman and Werner Stuetzle. Projection pursuit regression. Journal of the
American Statistical Association, 76(376):817–823, 1981. ISSN 01621459, 1537274X. URL
http://www.jstor.org/stable/2287576.

Jerome H. Friedman, Eric Grosse, and Werner Stuetzle. Multidimensional additive spline
approximation. SIAM Journal on Scientific and Statistical Computing, 4(2):291–301, 1983.
10.1137/0904023. URL https://doi.org/10.1137/0904023.

Jerome H. Friedman, Werner Stuetzle, and Anne Schroeder. Projection pursuit density
estimation. Journal of the American Statistical Association, 79(387):599–608, 1984. ISSN
01621459, 1537274X. URL http://www.jstor.org/stable/2288406.

J.H. Friedman and J.W. Tukey. A projection pursuit algorithm for exploratory data anal-
ysis. IEEE Transactions on Computers, C-23(9):881–890, 1974. 10.1109/T-C.1974.224051.

Christopher Frye, Damien de Mijolla, Tom Begley, Laurence Cowton, Megan Stanley, and
Ilya Feige. Shapley explainability on the data manifold. In International Conference on
Learning Representations, 2021. URL https://openreview.net/forum?id=OPyWRrcjVQw.

Fabian Fumagalli, Maximilian Muschalik, Eyke Hüllermeier, Barbara Hammer, and Julia
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valuation. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 3535–3544. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119

/ghorbani20a.html.

Donald B Gillies. Solutions to general non-zero-sum games. Contributions to the Theory
of Games, 4(40):47–85, 1959.

David Ginsbourger. Gaussian random field models for function approximation under struc-
tural priors and adaptive design of experiments. Habilitation thesis, University of Bern,
2013.

David Ginsbourger, Olivier Roustant, Dominic Schuhmacher, Nicolas Durrande, and Nico-
las Lenz. On anova decompositions of kernels and gaussian random field paths. In Ronald

61

https://openreview.net/forum?id=3WLpiPeJbk
https://openreview.net/forum?id=3WLpiPeJbk
https://openreview.net/forum?id=eh9GSU9wDj
http://www.jstor.org/stable/2841583
http://jmlr.org/papers/v26/23-0058.html
http://jmlr.org/papers/v26/23-0058.html
http://www.jstor.org/stable/2237272
https://proceedings.mlr.press/v97/ghorbani19c.html
https://proceedings.mlr.press/v97/ghorbani19c.html
https://proceedings.mlr.press/v119/ghorbani20a.html
https://proceedings.mlr.press/v119/ghorbani20a.html


Enouen and Liu

Cools and Dirk Nuyens, editors, Monte Carlo and Quasi-Monte Carlo Methods, pages 315–
330, Cham, 2016. Springer International Publishing. ISBN 978-3-319-33507-0.

Vasilis Gkolemis, Anargiros Tzerefos, Theodore Dalamagas, Eirini Ntoutsi, and Christos
Diou. Regionally additive models: Explainable-by-design models minimizing feature inter-
actions, 2023. URL https://arxiv.org/abs/2309.12215.

Alex Goldstein, Adam Kapelner, Justin Bleich, and Emil Pitkin. Peeking inside the black
box: Visualizing statistical learning with plots of individual conditional expectation. Jour-
nal of Computational and Graphical Statistics, 24(1):44–65, 2015. 10.1080/10618600.2014.907095.
URL https://doi.org/10.1080/10618600.2014.907095.

Gene H Golub, Michael Heath, and Grace Wahba. Generalized cross-validation as a method
for choosing a good ridge parameter. Technometrics, 21(2):215–223, 1979.

Michel Grabisch and Marc Roubens. An axiomatic approach to the concept of interac-
tion among players in cooperative games. International Journal of Game Theory, 1999.
10.1007/s001820050125. URL https://doi.org/10.1007/s001820050125.

Peter Green, Christopher Jennison, and Allan Seheult. Analysis of field experiments by
least squares smoothing. Journal of the Royal Statistical Society. Series B (Methodological),
47(2):299–315, 1985. ISSN 00359246. URL http://www.jstor.org/stable/2345573.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 855–864, 2016.

Chong Gu. Smoothing spline density estimation: Conditional distribution. Statistica
Sinica, 5(2):709–726, 1995. ISSN 10170405, 19968507. URL http://www.jstor.org/st

able/24305065.

Chong Gu. Penalized likelihood hazard estimation: A general procedure. Statistica Sinica,
6(4):861–876, 1996. ISSN 10170405, 19968507. URL http://www.jstor.org/stable/243

06046.

Chong Gu. Structural multivariate function estimation: Some automatic density and
hazard estimates. Statistica Sinica, 8(2):317–335, 1998. ISSN 10170405, 19968507. URL
http://www.jstor.org/stable/24306495.

Chong Gu. Smoothing spline ANOVA models, volume 297. Springer, 2002.

Chong Gu and Grace Wahba. Discussion: Multivariate adaptive regression splines. The
Annals of Statistics, 19(1):115–123, 1991a. ISSN 00905364, 21688966. URL http://www.

jstor.org/stable/2241846.

Chong Gu and Grace Wahba. Minimizing gcv/gml scores with multiple smoothing param-
eters via the newton method. SIAM Journal on Scientific and Statistical Computing, 12
(2):383–398, 1991b. 10.1137/0912021. URL https://doi.org/10.1137/0912021.

Chong Gu and Grace Wahba. Semiparametric analysis of variance with tensor product
thin plate splines. Journal of the Royal Statistical Society. Series B (Methodological), 55
(2):353–368, 1993a. ISSN 00359246. URL http://www.jstor.org/stable/2346197.

62

https://arxiv.org/abs/2309.12215
https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.1007/s001820050125
http://www.jstor.org/stable/2345573
http://www.jstor.org/stable/24305065
http://www.jstor.org/stable/24305065
http://www.jstor.org/stable/24306046
http://www.jstor.org/stable/24306046
http://www.jstor.org/stable/24306495
http://www.jstor.org/stable/2241846
http://www.jstor.org/stable/2241846
https://doi.org/10.1137/0912021
http://www.jstor.org/stable/2346197


Survey of ML Interpretability via Interactions

Chong Gu and Grace Wahba. Smoothing spline anova with component-wise bayesian
”confidence intervals”. Journal of Computational and Graphical Statistics, 2(1):97–117,
1993b. ISSN 10618600. URL http://www.jstor.org/stable/1390957.

Chong Gu, Douglas M. Bates, Zehua Chen, and Grace Wahba. The computation of general-
ized cross-validation functions through householder tridiagonalization with applications to
the fitting of interaction spline models. SIAM Journal on Matrix Analysis and Applications,
10(4):457–480, 1989. 10.1137/0610033. URL https://doi.org/10.1137/0610033.

S.R. Gunn and J.S. Kandola. Structural Modelling with Sparse Kernels. 2002.

Steve R. Gunn and Martin Brown. SUPANOVA - A Sparse, Transparent Modelling Ap-
proach. 1999.

Eric Günther, Balázs Szabados, Robi Bhattacharjee, Sebastian Bordt, and Ulrike von
Luxburg. Informative post-hoc explanations only exist for simple functions, 2025. URL
https://arxiv.org/abs/2508.11441.

Joseph Y. Halpern. Actual Causality. The MIT Press, 2016. ISBN 9780262035026. URL
http://www.jstor.org/stable/j.ctt1f5g5p9.

Zayd Hammoudeh and Daniel Lowd.

Ning Hao and Hao Helen Zhang. Interaction screening for ultrahigh-dimensional data.
Journal of the American Statistical Association, 109(507):1285–1301, 2014a.

Ning Hao and Hao Helen Zhang. Interaction screening for ultrahigh-dimensional data.
Journal of the American Statistical Association, 109(507):1285–1301, 2014b.

John C. Harsanyi. A simplified bargaining model for the n-person cooperative game.
International Economic Review, 4(2):194–220, 1963. ISSN 00206598, 14682354. URL
http://www.jstor.org/stable/2525487.

R. A Harshman. Foundations of the parafac procedure: Models and conditions for an
“explanatory” multimodal factor analysis, 1970.

Sergiu Hart and Mordecai Kurz. Endogenous formation of coalitions. Econometrica, 51
(4):1047–1064, 1983. ISSN 00129682, 14680262. URL http://www.jstor.org/stable/1

912051.

Sergiu Hart and Andreu Mas-Colell. Potential, value, and consistency. Econometrica, 57(3):
589–614, 1989. ISSN 00129682, 14680262. URL http://www.jstor.org/stable/1911054.

Trevor Hastie and Robert Tibshirani. Generalized additive models. Technical report, Dept.
of Statistics, Stanford University, 1984.

Trevor Hastie and Robert Tibshirani. Generalized additive models. Statistical science, 1
(3):297–310, 1986.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New York, NY, USA,
2001.

Trevor J Hastie and Robert J Tibshirani. Generalized additive models, 1990.

63

http://www.jstor.org/stable/1390957
https://doi.org/10.1137/0610033
https://arxiv.org/abs/2508.11441
http://www.jstor.org/stable/j.ctt1f5g5p9
http://www.jstor.org/stable/2525487
http://www.jstor.org/stable/1912051
http://www.jstor.org/stable/1912051
http://www.jstor.org/stable/1911054


Enouen and Liu

Stefan Haufe, Frank Meinecke, Kai Görgen, Sven Dähne, John-Dylan Haynes, Benjamin
Blankertz, and Felix Bie⊆ mann.Ontheinterpretationofweightvectorsoflinearmodelsinmultivariateneuroimaging.NeuroImage, 87 :
96−−110, 2014.ISSN1053−8119.https : //doi.org/10.1016/j.neuroimage.2013.10.067.URL.

Julia Herbinger, Bernd Bischl, and Giuseppe Casalicchio. Repid: Regional effect plots with
implicit interaction detection. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel
Valera, editors, Proceedings of The 25th International Conference on Artificial Intelligence
and Statistics, volume 151 of Proceedings of Machine Learning Research, pages 10209–10233.
PMLR, 28–30 Mar 2022. URL https://proceedings.mlr.press/v151/herbinger22a.

html.

Julia Herbinger, Marvin N. Wright, Thomas Nagler, Bernd Bischl, and Giuseppe Casalic-
chio. Decomposing global feature effects based on feature interactions. Journal of Machine
Learning Research, 25(381):1–65, 2024. URL http://jmlr.org/papers/v25/23-0699.ht

ml.

Andrew Herren and P. Richard Hahn. Statistical aspects of shap: Functional anova for
model interpretation, 2022. URL https://arxiv.org/abs/2208.09970.

Tom Heskes, Evi Sijben, Ioan Gabriel Bucur, and Tom Claassen. Causal shapley val-
ues: Exploiting causal knowledge to explain individual predictions of complex models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neu-
ral Information Processing Systems, volume 33, pages 4778–4789. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/32e54

441e6382a7fbacbbbaf3c450059-Paper.pdf.

Tin Kam Ho. Random decision forests. In Proceedings of 3rd International Conference
on Document Analysis and Recognition, volume 1, pages 278–282 vol.1, 1995. 10.1109/IC-
DAR.1995.598994.

Wassily Hoeffding. A Class of Statistics with Asymptotically Normal Distribution. The
Annals of Mathematical Statistics, 19(3):293 – 325, 1948. 10.1214/aoms/1177730196. URL
https://doi.org/10.1214/aoms/1177730196.

Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Applications to nonorthogonal
problems. Technometrics, 12(1):69–82, 1970a. 10.1080/00401706.1970.10488635.

Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Biased estimation for nonorthog-
onal problems. Technometrics, 12(1):55–67, 1970b. 10.1080/00401706.1970.10488634.

Manfred J Holler. A priori party power and government formation. Munich Social Science
Review, 4:25–41, 1978.

Manfred J Holler and Stefan Napel. Monotonicity of power and power measures. Theory
and Decision, 56(1):93–111, 2004.

Manfred J. Holler and Edward W. Packel. Power, luck and the right index. Zeitschrift für
Nationalökonomie / Journal of Economics, 43(1):21–29, 1983. ISSN 00443158, 23048360.
URL http://www.jstor.org/stable/41798164.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A
transformer that solves small tabular classification problems in a second. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview

.net/forum?id=cp5PvcI6w8_.

64

https://www.sciencedirect.com/science/article/pii/S1053811913010914
https://proceedings.mlr.press/v151/herbinger22a.html
https://proceedings.mlr.press/v151/herbinger22a.html
http://jmlr.org/papers/v25/23-0699.html
http://jmlr.org/papers/v25/23-0699.html
https://arxiv.org/abs/2208.09970
https://proceedings.neurips.cc/paper_files/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://doi.org/10.1214/aoms/1177730196
http://www.jstor.org/stable/41798164
https://openreview.net/forum?id=cp5PvcI6w8_
https://openreview.net/forum?id=cp5PvcI6w8_


Survey of ML Interpretability via Interactions

Fuxing Hong, Dongbo Huang, and Ge Chen. Interaction-aware factorization machines for
recommender systems. Proceedings of the AAAI Conference on Artificial Intelligence, 33
(01):3804–3811, Jul. 2019. 10.1609/aaai.v33i01.33013804. URL https://ojs.aaai.org

/index.php/AAAI/article/view/4267.

Giles Hooker. Discovering additive structure in black box functions. In Proceedings of the
tenth ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 575–580. ACM, 2004.

Giles Hooker. Generalized functional anova diagnostics for high-dimensional functions of
dependent variables. Journal of Computational and Graphical Statistics, 16(3):709–732,
2007.

Giles Hooker and Lucas Mentch. Please stop permuting features: An explanation and
alternatives, 2019. URL https://arxiv.org/abs/1905.03151.

Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey.
Sparse autoencoders find highly interpretable features in language models. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview

.net/forum?id=F76bwRSLeK.

Peter J. Huber. Robust regression: Asymptotics, conjectures and monte carlo. The Annals
of Statistics, 1(5):799–821, 1973. ISSN 00905364, 21688966. URL http://www.jstor.or

g/stable/2958283.

Marcus Hutter. Universal Artificial Intellegence - Sequential Decisions Based on Algorith-
mic Probability. Springer, 2005.

Huynh Huynh and Leonard S. Feldt. Conditions under which mean square ratios in re-
peated measurements designs have exact f-distributions. Journal of the American Sta-
tistical Association, 65(332):1582–1589, 1970. ISSN 01621459, 1537274X. URL http:

//www.jstor.org/stable/2284340.

Shibal Ibrahim, Gabriel Afriat, Kayhan Behdin, and Rahul Mazumder. Grand-slamin’
interpretable additive modeling with structural constraints. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Infor-
mation Processing Systems, volume 36, pages 61158–61186. Curran Associates, Inc., 2023.
URL https://proceedings.neurips.cc/paper_files/paper/2023/file/c057cb81b8d

3c67093427bf1c16a4e9f-Paper-Conference.pdf.

Sarthak Jain and Byron C. Wallace. Attention is not Explanation. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
3543–3556, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.
10.18653/v1/N19-1357. URL https://aclanthology.org/N19-1357.

Dominik Janzing, Lenon Minorics, and Patrick Bloebaum. Feature relevance quantification
in explainable ai: A causal problem. In Silvia Chiappa and Roberto Calandra, editors, Pro-
ceedings of the Twenty Third International Conference on Artificial Intelligence and Statis-
tics, volume 108 of Proceedings of Machine Learning Research, pages 2907–2916. PMLR,
26–28 Aug 2020. URL https://proceedings.mlr.press/v108/janzing20a.html.

65

https://ojs.aaai.org/index.php/AAAI/article/view/4267
https://ojs.aaai.org/index.php/AAAI/article/view/4267
https://arxiv.org/abs/1905.03151
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK
http://www.jstor.org/stable/2958283
http://www.jstor.org/stable/2958283
http://www.jstor.org/stable/2284340
http://www.jstor.org/stable/2284340
https://proceedings.neurips.cc/paper_files/paper/2023/file/c057cb81b8d3c67093427bf1c16a4e9f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/c057cb81b8d3c67093427bf1c16a4e9f-Paper-Conference.pdf
https://aclanthology.org/N19-1357
https://proceedings.mlr.press/v108/janzing20a.html


Enouen and Liu

Neil Jethani, Mukund Sudarshan, Ian Connick Covert, Su-In Lee, and Rajesh Ranganath.
FastSHAP: Real-time shapley value estimation. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=Zq2G_VTV53T.

Yang Ji, Ying Sun, Yuting Zhang, Zhigaoyuan Wang, Yuanxin Zhuang, Zheng Gong,
Dazhong Shen, Chuan Qin, Hengshu Zhu, and Hui Xiong. A comprehensive survey on
self-interpretable neural networks, 2025. URL https://arxiv.org/abs/2501.15638.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo Li,
Ce Zhang, Costas Spanos, and Dawn Song. Efficient task-specific data valuation for nearest
neighbor algorithms. Proc. VLDB Endow., 12(11):1610–1623, July 2019a. ISSN 2150-8097.
10.14778/3342263.3342637. URL https://doi.org/10.14778/3342263.3342637.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel,
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