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Abstract -- This project was about exploring the size of a neural network and how it impacts the system’s 

accuracy in classification.  Primarily, the investigation focused on shrinking very large networks to fit 

smaller scale machines and on studying the accuracy of a model as its number of parameters grew larger 

and larger.  In this first section, we assured that compression models could get very similar accuracies 

while using much fewer parameters.  In the second section, we witnessed better testing accuracy and 

generalization if we continue to add parameters even if there is a period of time when we are perfectly 

fitting the training set.  The overall conclusion we reached is that modern systems do not utilize their 

parameters to the greatest efficacy.  

 

I. Introduction 

This paper investigates how the size of a network impacts its accuracy and takes two primary 

perspectives to examine.  The first is the side of compression, which takes a model and reduces the number 

of parameters while trying to maintain similar accuracy.  One way to do this is by taking a trained model 

and pruning it to its ‘essential’ parameters.  The other method, which we focus on, performs full training 

on the same task but with a model structure which is designed to use significantly less parameters than the 

original implementation (while maintain similar accuracy).  The other perspective we take on network size 

is the asymptotics of when to stop adding parameters.  In general, one may be unsure if adding extra 

parameters and complexity will be beneficial to their accuracy or if the training will end up being a massive 

waste of computational time by merely yielding worse generalization to their testing set.  We believe it is 

not generally understood exactly where these thresholds lie, so the models people use are not able to fully 

take advantage of storage/ computation of their models.  This paper begins to take a few steps starting to 

question how to resolve these issues and ultimately develop more potent neural networks. 

II. Compression 

There are two prior works which falls in the scope of our research [1][2]. “SqueezeNet [1]” uses 

smaller CNN which achieves AlexNet level accuracy on ImageNet dataset with 50x lesser parameters. 

Smaller models have several advantages: 1. They enable efficient distributed training 2. There is less 

overhead when exporting new models to clients 3. Feasible embedded systems deployment 4. Mobile 

Applications require very small sized models. For a fixed accuracy level, researchers explore several 

methods to reduce the model size. “Deep Compression [2]” explores methods to compress a deep neural 

network by using network pruning, quantization and Huffman coding. Using SqueezeNet and Deep 

Compression together yielded a model with less than 0.5 Mb size on ImageNet data set. 

A. Methods 

SqueezeNet uses three key strategies in order to substantially reduce the model size. Figure 1 

explains SqueezeNet architecture. Firstly, SqueezeNet replaces 3x3 filters with 1x1 filters. This leads to 9x 

less parameters. Secondly, Squeeze Layer is used to reduce the number of input channels to 3x3 filters. 

Lastly, down sampling is done later in the network so that convolution layers would have large activation 

maps. Convolution Layer is replaced with a smaller Fire module. Fire Module is comprised of squeeze and 



 

 

expansion layer which helps in reducing the number of parameters. Also, fully connected layer is replaced 

with a softmax layer.  

Deep Compression introduces techniques which can be used to substantially reduce the size of 

pretrained model. Deep Compression uses Network pruning to learn only important connections, the 

weights are quantized to allow weight sharing and Huffman coding is applied which uses smaller length 

bits to represent more frequently occurring weights. On an average, Pruning reduces the number of 

connections by 9x-13x, quantization and Huffman coding reduces the number of bits that represent each 

connection from 32 to 5. 

 

Figure 1: SqueezeNet Architecture 

B. Experiments 

Our plan is to first replicate the results of SqueezeNet paper, apply Deep Compression on obtained 

model. We plan to use Cifar-10 Dataset to understand the performance of compression techniques. 

Additionally, we plan to modify AlexNet architecture with few compression techniques we learned and 

measure performance [2] [3].  

 

Table 1: Compression techniques applied 



 

 

Results from Table 1 shows that using SqueezeNet reduced model size of AlexNet (trained with 

ImageNet data) from 240 MB to 4.8 MB. Table 1 also shows applying Deep Compression directly on 

AlexNet reduced model size from 240 MB to 6.9 MB. We applied Deep Compression on obtained 

SqueezeNet model which further reduced model size from 4.8 MB to 0.66 MB. Deep Compression was 

applied with 8-bit quantization. The accuracy for top-1 and top-5 were same even after compression. 

SqueezeNet with Deep Compression reduced the model size by 363x compared to baseline (AlexNet 

without compression). 

 

Figure 2: SqueezeNet on CIFAR-10 DataSet 

We trained SqueezeNet with CIFAR-10 dataset. The experiment was conducted for 250 epochs 

and final model size was 1.6 MB. The baseline model size (AlexNet with CIFAR-10) was 190 MB. 

Applying Deep Compression to the obtained SqueezeNet model further reduced the model size to 0.9 MB. 

We conducted newer experiments: 1. In AlexNet Architecture we replaced fully connected layer with global 

average pooling and applied a softmax [5]. This didn’t reduce the model size significantly because filter 

size was unchanged and down sampling was performed at earlier stage. 2. In AlexNet Architecture we 

replaced all the Convolution Layer with Fire Layer [5]. This reduced the model size from 190 MB to 27 

MB without much compromise in accuracy. 

III. Asymptotics 

The central focus of this section about the investigation of asymptotics is the paper [6] which offers 

a new perspective on the classically believed bias-variance tradeoff.  This idea suggests that we indeed get 

better results by adding more and more parameters/ hidden units to our model, despite the local maximum 

we approach as we reach the interpolation threshold of ‘perfect fitting’.  The paper suggests, moreover, that 

the minimum at the end of this curve tends to be lower than the local minimum attained in the bias-variance 

tradeoff curve.  

 



 

 

This idea which they call the “double descent” curve is proven for Random Fourier Features, which 

is a model of a neural network with a single hidden layer where the first set of weights are fixed and the 

last set of weights are trained.  The main issues that the paper suggests moving into actual neural networks 

are: there is a large variance between layers, making results difficult to replicate; random initialization of 

parameters additionally feed into this difficulty; and gradient descent can still find itself trapped at a local 

minima, rendering it unable to achieve the ‘second descent.’  Despite these challenges, we were also able 

to get reasonable reproduction of this curve on a neural network of our own.   

A. Replication 

The first step we took is to replicate the results achieved by the paper for a single hidden layer.  We 

perform binary classification on a much smaller and simpler dataset than the paper because of 

computational limitations.  Our dataset is a Gaussian distributed around the origin with a point’s class being 

determined by the quadrant in which it lies, as in Figure 3.  This dataset is clearly not linearly separable, 

so we should not be able to perfectly classify this data with any type of linear classifier.  Also, no convex 

classifier will be able to recognize this dataset as well.  Hence, we look to see the double descent curve in 

action for this slightly abnormal scenario. 

 

Figure 3: Binary classification dataset 

Our results are also messier than the results the paper was able to achieve when applied to an actual 

neural network; however, the pattern is still apparent in our smaller set.  We have that the training error 

dips to zero and as this occurs, there is a spike in the network’s validation error corresponding to the model’s 

lower generalizability.  This is the idea preached by the “modern interpolation regime” [6] This provides 

more empirical evidence that we want to grow our models arbitrarily large in order to approximate our 

dataset arbitrarily well.    



 

 

 

Figure 4: Training loss vs. model complexity   Figure 5: Testing accuracy vs. model complexity 

B. Regression 

We investigated how this idea would work when performing regression instead of classification.  

Because there is no type of regularization on our regression model, we expect that this method should 

simply fail.  Overfitting in the traditional sense applies to the regression case and we get none of the benefits 

of overparameterizing our system.  Our training loss is only a function of accuracy on the empirical values 

provided which causing the model to overfit to these particular points.  We demonstrate this failure of the 

second descent by doing regression on a sine curve sampled in Figure 8.  The wider hidden layer does not 

incentivize the network to learn a simpler curve, but rather throws unnecessary detail into the model since 

the model can already achieve zero loss on the testing set by directly fitting the examples.  We highlight 

this by showing hand-picked results in Figure 6 and Figure 6 below for 10,000 hidden units and 100,000 

hidden units where the lower parameterized model attains a much better approximation of the sine curve 

which illustrates the failure of overparameterization.   This failure in a regression setting is a result which 

is probably understood by the writers of the paper; however, it is not mentioned in their paper, so we chose 

to highlight this failure of this second descent. 

 

Figure 6: Predictions by 10,000 hidden units  Figure 7: Predictions by 100,000 hidden units 



 

 

 

 

Figure 8: Regression classification dataset 

C. Deep Neural Networks 

Our largest step towards future work is investigating how the double descent curve shows up in a 

deep network setting.  We still investigate binary classification, but instead of only looking at results from 

growing a single hidden layer’s size, we also increase the number of layers used in the model.  We trained 

on a dataset which is still relatively small but it is a slightly higher dimensional generalization of the first 

dataset we investigated for binary classification.   

In our results, we see some remnants of the double descent curve, but it is not replicated in the way 

we originally anticipated.  In Table 2 and Table 3 the results are displayed for hidden layer sizes between 

1 and 20 and number of layers between 1 and 10.  By looking at the first row, which corresponds to the 

single hidden layer, we observe the expected curve where the interpolation threshold spikes at 8 hidden 

units.  This should and does work because it is exactly the double descent curve as in section A, Replication.  

 

 

 

 

 

 

 

If we look at a specific row, fixing the number of layers for our model, then we do see the validation 

spikes from the double descent curve; however, they are now overlaid with spikes in the training loss as 

well.  This indicates that the phenomenon occurring here is not the exact same type as double descent, and 

possibly suggests that these models become more difficult to train as they hit the interpolation threshold 

and as their number of layers increases the variance of the model. 

Table 2: Testing Accuracy for 1-10 hidden layers and 1-20 hidden units per layer 

Table 3: Training loss for 1-10 hidden layers and 1-20 hidden units per layer 



 

 

Regardless, we see the overall trend that these results disagree with the double descent curve as it 

is originally phrased.  If the double descent curve was exactly a function of the complexity of the model 

we would see something closer to Figure 10 on the next page, but we actually see results more reflective 

of the other direction in Figure 9 below.  This generally aligns with the viewpoint that a model loses a lot 

of stability near the interpolation threshold; however, we clearly need to do more investigation on the 

exact interplay this has with gradient descent and other methods to actualize these models.  We do not 

fully understand why the models become so much more difficult to train despite the fact that they are 

strictly more general than their predecessors and should hence perform better.  This is the most interesting 

discovery we made and certainly warrants more examination.   

 

Figure 9: Witnessed pattern in testing error 

 

Figure 10: Expected pattern in testing error 

 

IV. Conclusion 

We understood methods to substantially reduce Neural Network model. We can choose an 

architecture which reduces number of parameters and apply compression techniques like pruning, 

quantization and Huffman encoding which greatly reduces model size. We can generalize compression to 

Microarchitecture compression which involves reducing the size of a module and Macroarchitecture 

approach which focuses on reducing the total size of model by modifying the architecture being used. 

Our discovery is that the double descent curve is true and refines our previous beliefs for the bias-

variance tradeoff.  The fact that it did not perfectly reveal itself in a deeper network setting is concerning, 

but also very interesting because it indicates that the double descent curve cannot describe this phenomenon 

alone and there needs to be more work in understanding how gradient descent is able to train neural 

networks and the consequences on the generalizability of the trained model.  As is generally understood, it 

is a little more difficult to train deeper networks (which could be the cause for our results)  A suggested fix 

by the Swiss AI Lab in [7] is to add extra connections which span multiple layers to help information flow. 

This is one of many approaches which would compose a more thorough investigation of this topic.  



 

 

Ultimately, this would lead to  a fuller understand of when adding or removing parameters from our deep 

models yield more efficiency on the computer space and time that we are using.  This would be very 

beneficial to the precise tuning of modern models.  

Overall, we believe that deep neural networks need to be carefully studied to understand the 

required accuracy level. Having obtained required accuracy level, the model can be substantially 

compressed using an efficient Neural Network Architecture and employing different compression 

techniques. Model Compression is crucial for applications receiving frequent model updates and storage 

restricted devices like mobile, FPGA and embedded systems.  Further study needs to be done to bring 

modern models the required tuning to fit smaller spaces and obtain greater accuracies. 

V. References 

[1] Forrest et. al, SqueezeNet: Alexnet-level accuracy with 50x fewer parameters and <1MB model size, 

CoRR, 2016, https://arxiv.org/abs/1602.07360 

  

[2] Song et. al, Deep Compression: Compressing Deep Neural Networks with Pruning, Trained 

Quantization and Huffman coding, ICPR, 2016, https://arxiv.org/abs/1510.00149 

 

[3]  Landola, Forest.  SqueezeNet Repository. “SqueezeNet: AlexNet-level accuracy with 50x fewer 

parameters” https://github.com/DeepScale/SqueezeNet 

 

[4] Sicong et. al, On-demand Deep Model Compression for Mobile Devices: Usage-Driven Model 

Selection F/W. https://www.tik.ee.ethz.ch/file/79a7dd6f6370f809e6180c0746232283/mobisys18-liu.pdf 

 

[5] Yu Cheng et. al, A Survey of Model Compression and Acceleration for Deep Neural Networks, 

https://arxiv.org/pdf/1710.09282.pdf 

 

[6] Belkin, M., Hsu, D., Ma, S., & Mandal, S.  Reconciling modern machine learning and the bias-

variance trade-off, 2018, https://arxiv.org/abs/1812.11118 

[7] Srivastava, R. K., Schmidhuber, J., & Greff, K. Highway Networks, 2015, 

https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf 

 

 

 

https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1510.00149
https://github.com/DeepScale/SqueezeNet
https://www.tik.ee.ethz.ch/file/79a7dd6f6370f809e6180c0746232283/mobisys18-liu.pdf
https://arxiv.org/pdf/1710.09282.pdf

