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Abstract. In real-world applications with semantic classification labels
(‘dog’, ‘car’, ‘chair’, etc.), it would be advantageous to identify any un-
confident classification and then determine if a less specific label could
instead be reliably established. In this work, we present a hierarchical es-
timation and inference approach using a semantic concept tree to provide
an appropriate generalized label when needed. The proposed method has
several advantages, including the ability to work with any logit/softmax-
based semantic label classifier, the ability to correct many misclassified
labels while not introducing any new errors, and a statistical guarantee
of confidence for the final labels. We additionally provide a new set of hi-
erarchical metrics to properly evaluate the approach. Multiple synthetic
and real datasets are examined to demonstrate how the framework can
quickly and efficiently resolve unconfident predictions.

Keywords: Concept Tree · Classification Confidence · Semantics.

1 Introduction

Current deep learning approaches to semantic segmentation and image clas-
sification show compelling results across multiple challenging datasets (e.g.,
[5][2][14][11]). However, standard comparative performance metrics (accuracy,
intersection-over-union, etc.) typically restrict the task and comparison to a
“best-guess” for each pixel/image, though the predicted label may not be uniquely
plausible. This forced-choice classification approach is obviously useful for cur-
rent benchmarking purposes, but as no classifier is perfect (or ever will be) this
approach can be problematic in real deployment scenarios. We believe it is im-
portant to identify an unreliable prediction and seek to find a reliable label from
a set of more general options. Employing instead a top-N criteria, where credit
is given if the correct answer is within the classifier’s N best guesses, is still
problematic as the label to choose and act upon is still unknown.

We base our approach on the natural categorical relationships of semantic
labels and employ a concept tree representation that hierarchically organizes la-
bels using IS-A relationships. For example, the initial terminal-level label ‘chair’

? This work was supported by the U.S. Air Force Research Laboratory contract
#GRT00044839/60056946. We acknowledge Sam Lerner for development insights.



2 J. Davis et al.

may be deemed unconfident due to a confusion with another label (‘sofa’), occlu-
sion, poor view-angle, etc. In this case, the parent concept ‘Seat’ would next be
considered (which is composed of the related terminal descendants ‘chair’ and
‘sofa’). If ‘Seat’ is also unconfident, the tree will be traversed upward through
increasingly generalized labels, such as ‘Furniture’ and ‘Object’, until a confi-
dent assessment can be found. Reaching the root node (‘Unknown’) represents a
withdrawn classification, which still has practical importance since it allows one
to not act on any likely false label. This approach is based on underlying label
confusions, but can still address misclassifications related to occlusion, view, etc.

Consider the task of image indexing, which searches for similar images us-
ing either concept-based methods based on textual descriptions (e.g., keywords,
captions, etc.) or content-based approaches using image features. One can bridge
these two approaches by employing semantic segmentation to automatically de-
rive a list of objects present in the image to use for indexing. If the forced best-
guess results are used, the list of uniquely predicted labels may be corrupt due
to classification errors. Hence, the image retrieval process will be sub-optimal.
Alternatively, one could use a score on each pixel classification and simply dis-
card any predictions with a low score. However, with the removal of unconfident
predictions, important object labels may be missed. Instead, a method that can
produce a fuller list of highly-confident, specific and generalized labels will be
more descriptive and powerful.

We present a principled approach to construct a concept tree for a set of
semantic labels using the natural relationships provided in a lexical database.
We also provide a Bayesian method to estimate confidence throughout the con-
cept tree using the learned posterior probability of labels given softmax values
provided by a base classifier. The posterior for a given label is compared to a
specified confidence threshold to determine if the label should be generalized or
not. The proposed framework has multiple contributions and advantages:

– Applicable to any base classifier that outputs semantic labels and cor-
responding logit/softmax scores.

– Provides a statistical guarantee to meet a given level of confidence.
– Withdraws from any forced classification if a sufficiently confident label

cannot be found.
– Does not produce additional incorrect classifications, and has potential

to correct errors made by the base classifier.
– Enables fast and efficient label inference.
– Presents new hierarchical metrics for evaluation.

We will outline the framework and computational efficiencies, and demon-
strate the effectiveness of the approach with multiple classification tasks, models,
and datasets.

2 Related Work

The foundation of our work is based on a hierarchical organization of semantic
labels, which we refer to as a concept tree. Other related work with such label
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hierarchies have been proposed. In [12], the hierarchy is used to encode prior
knowledge about class similarities for knowledge transfer during training, espe-
cially for classes that have insufficient training examples. However, only terminal
labels are produced in the final classification, unlike our approach which provides
both terminal and non-terminal labels when needed. The top-down strategy in
[8] progresses through multiple classifications (from general to specific) to reach
a final terminal label. Similarly, [10] uses a tree of labels for classification by
multiplying conditional probabilities along the path from the root to a partic-
ular label. For detection within a selected bounding box, the tree is traversed
downward, taking the highest confidence path at every split until a threshold
is reached. In these approaches, any classification error or poorly modeled con-
ditional probability occurring early (high) in the tree will drive the decision
process down a wrong branch. Our approach instead begins with the original
terminal classification and softens upward through the tree only as needed until
a confident label is found. In [15], pixel features are mapped to a word embed-
ding space for label retrieval within a concept hierarchy. When used to predict
terminal-only labels, the performance was lower than state-of-the-art. Their main
advantage was demonstrated in zero-shot learning (not addressed in this work),
where novel objects were able to be labeled to generalized concepts when their
features shared enough similarity to known objects at higher levels.

Another important aspect of this work is the use of a confidence measure on
classification. The softmax value associated with the best classification label is
often taken as a measure of confidence. But as presented in [4], modern deep
neural networks are not well calibrated, i.e., P (l|s) 6= s for the softmax value
s of the argmax-selected label l. Several approaches to calibrate softmax values
into true probabilities have been proposed (see overview in [4]), which include
histogram-based precision methods and temperature scaling of the logits (before
the softmax operation). However, issues can arise in the histogram approaches
when very few true and false positive predictions are available in a particular
softmax bin for a class (their ratio is unstable). Also, temperature scaling is de-
signed to calibrate either over-confident or under-confident classifications, but a
class may actually be both (at different softmax ranges). Rather than attempt-
ing to calibrate with these issues, we instead take a direct Bayesian approach to
measure the posterior probability of a class label given the softmax value.

3 Framework

Our proposed approach employs a semantic concept tree, which defines the hier-
archical relationship between the terminal labels for a given dataset and higher,
more generalized, label concepts. A measure of confidence is used to evaluate an
initial label hypothesis and guide generalization upward through the tree until
a sufficiently confident concept is found. The overall framework is composed of
a separate estimation and inference procedure.
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3.1 Concept Tree Generation

Any semantic concept tree can be employed, with more levels offering a larger
range of label generalization possibilities, and the tree will necessarily be dictated
by the particular application at hand. Rather than manually creating a list of ad
hoc concepts and tree, we employed a non-biased, repeatable technique on each
examined dataset. Our approach is based on WordNet [9], which has an internal
hierarchical structure of words based on grammar usage. Other lexical relational
databases or other techniques could also be used, but we chose WordNet as it
is a well-established resource with existing connections to datasets and has an
available Python binding (nltk).

To begin, one must select a particular WordNet definition for each terminal
label, referred to as a synset, as certain labels are semantically ambiguous. For
example, the noun ‘mouse’ in a dataset could refer to a rodent (n.01) or perhaps
a hand-operated electronic device (n.04). Once the appropriate synset definition
(n.xx) is assigned to each label, the bottom-up tree building process begins.

For each possible pairing of labels, we find their Lowest Common Subsumer
(LCS), which is the deepest generalized label in WordNet where the two labels
merge. For example, LCS(‘chair’, ‘sofa’) = ‘Seat’. We then select the label pair
(li, lj) having the deepest LCS in the WordNet hierarchy. For that label pair,
we assign their LCS as their direct parent in the concept tree. The label pair is
then removed from the list of labels to examine and their LCS is added to the
list (if not already present). We again generate the LCS for all pairs in the new
label list, and the deepest LCS is to added to the concept tree. Note that if one
terminal label is a parent of another terminal label in WordNet, then we retain a
separate terminal and non-terminal version of that parent label in the hierarchy.
This process is repeated until only one label remains (root node), which we
assign to ‘Unknown’. This automatic approach is particularly advantageous for
constructing a meaningful tree with a large label set that would otherwise be
manually prohibitive.

3.2 Label Confidence

A classification confidence is required at each label/node in the concept tree. As
previously mentioned, modern deep learning classifiers produce softmax values s
(for the argmax selected labels l) that are uncalibrated, hence P (l|s) 6= s. A cal-
ibration transform can be attempted with the hope of attaining P (l|Calib(s)) =
Calib(s), but as previously described, issues related to sample sizes and both
over- and under-confidence within a class can produce undesirable results.

Instead we directly compute and evaluate P (l|s), the posterior probability
of a class label l given the example’s softmax value s associated with that class
(initially selected via argmax of the softmax vector). Using Bayes’ Rule on the
posterior with a two-class {l, ¬l} context, we have

P (l|s) =
P (s|l)P (l)

P (s)
=

P (s|l)P (l)

P (s|l)P (l) + P (s|¬l)P (¬l)
(1)
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To compute the posterior distribution for a terminal node in the concept tree,
we need to estimate its associated positive and negative class likelihoods and
priors (to be described in the next section). With the posteriors being computed
from known ground-truth class data, we do not have the previously mentioned
under-sampling issue that can be present in histogram-based calibration.

3.3 Estimation Procedure

To compute the priors P (l) and P (¬l) for each label l in the concept tree,
class proportions found in the training set or uniform (non-informative) priors
could be used. To estimate the posterior distribution, we additionally need to
compute its associated positive and negative likelihood distributions. We employ
a histogram-based approach, but other kernel density estimation methods could
be used. For this task it is import to use validation data, which was not used to
train the base classifier, as to reduce any overfitting.

For validation example x with ground-truth label l, we extract its correspond-
ing classifier softmax value s for class l. The value of s is quantized to index into
a histogram bin for this label and softmax value. As the range of softmax values
is 0 ≤ s ≤ 1, we can quantize s into nb bins using sq = min(floor(s·nb), nb−1).
With this index, the positive histogram bin H+

l [sq] is incremented.
Next, we need to increment the positive histograms for all label ancestors of l

in the concept tree. Each ancestor label a will be a generalization of l and also of
certain other terminal labels. For example x, we create a’s softmax value using
the sum of all the classifier softmax values in x for the terminal label descendants
of a. This aggregated softmax value is quantized to sq and used to increment
the positive histogram bin H+

a [sq]. This process is repeated for each ancestor of
l in the concept tree.

We must also increment the negative histograms for each label d in the set
corresponding to the other terminals and non-ancestor labels/nodes of l. The
associated terminals for d are identified and their corresponding classifier softmax
values in x are summed, quantized, and used to index and increment the negative
histogram bin H−d [sq].

After all validation examples have been processed, the likelihood distributions
are formed by L1-normalizing the respective histograms (P (sq|l) = H+

l /|H+
l |1,

P (s|¬l) = H−l /|H−l |1). Finally, to compute the posterior for label l, Eqn. 1
is used with P (l|sq) = P (sq|l)P (l)/(P (sq|l)P (l) + P (sq|¬l)P (¬l)). The overall
estimation algorithm is shown in Alg. 1.

3.4 Inference Procedure

To make the final (confident) prediction, the inference algorithm starts with es-
timating the posterior probability of the base classifier’s initial argmax-selected
label l (at a terminal node in the concept tree) using its corresponding soft-
max value s. Since modern deep learning classifiers typically perform well (more
often correct than incorrect), we expect the label selected via argmax to be a
reasonable initial label hypothesis, to be generalized as needed. Even if the initial
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Algorithm 1: Estimation

1 Organize concept tree for label set L
2 Compute label priors from training data (or set equal)
3 foreach validation example x do
4 l = ground-truth(x) // ground-truth label of x
5 sm = classifier softmax(x) // classifier softmax vector of x
6 s = sm[l] // corresponding softmax value
7 sq = quantize(s, nb) // quantize into set of nb bins

8 H+
l [sq ]++ // increment positive histogram for l

9 foreach label a in ancestors(l) do
10 J = get terminals(a) // get set of all terminals of a
11 s =

∑
j∈J sm[j] // sum their softmax values

12 sq = quantize(s, nb) // quantize into set of nb bins

13 H+
a [sq ]++ // increment positive histogram for a

14 end
15 foreach label d in L \ ({l} ∪ ancestors(l)) do
16 J = get terminals(d) // get set of all terminals of d
17 s =

∑
j∈J sm[j] // sum their softmax values

18 sq = quantize(s, nb) // quantize into set of nb bins

19 H−d [sq ]++ // increment negative histogram for d

20 end

21 end
22 foreach label l in L do

23 L1-Normalize H+
l and H−l into likelihoods

24 Compute posterior P (l|sq), ∀q using Bayes with likelihoods and priors

25 end

hypothesis is incorrect, the approach may still have an opportunity to generalize
to a correct label.

The softmax value s for the initial label l is quantized to sq and used to
index into the posterior P (l|sq). If the posterior is deemed unreliable (below
the given confidence threshold T), there must exist other competing terminal
label proposals. Therefore, we next examine the immediate parent of l with the
hope of merging those competing terminal proposals. As this parent label is a
generalization of the initial label and other related terminal labels, we sum all
of the classifier softmax values associated with this parent. This new softmax
sum is quantized and indexed into the parent label’s posterior distribution. If
the parent label posterior is also unconfident, we continue the process upward
until a sufficiently confident label is found or the root node is reached, which by
default has the label ‘Unknown’ with 100% confidence.

Importantly, with this method any originally incorrect prediction from the
base classifier may be re-assigned to a valid (non-root) label that is actually
an ancestor to the ground-truth label, thus correcting the initial error. Also, no
originally correct prediction can be corrupted to an incorrect label as it cannot
move off the upward path of the ground truth. Any initial label (either correct
or incorrect) can however be removed/discarded from classification and set to
‘Unknown’ if no reliable label can be found. The overall inference approach is
provided in Alg. 2 and is quite efficient and fast.
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Algorithm 2: Inference
Input : Test example x, confidence threshold T
Output: Confident label l for x

1 sm = classifier softmax(x) // classifier softmax vector of x
2 l = argmax sm // choose best class
3 s = sm[l] // corresponding softmax value
4 sq = quantize(s, nb) // quantize into set of nb bins
5 Conf = P (l|sq) // compute posterior confidence
6 while Conf < T do // not sufficiently confident
7 l = get parent(l) // use parent label
8 J = get terminals(l) // get set of all terminals of parent
9 s =

∑
j∈J sm[j] // sum their softmax values

10 sq = quantize(s, nb) // quantize into set of nb bins
11 Conf = P (l|sq) // compute posterior confidence

12 end
13 Assign x→ l // final classification

3.5 Hierarchical Metrics

An appropriate means is needed to evaluate the method’s ability to hierarchi-
cally soften/generalize, correct, and withdraw labels. There exist related met-
rics such as hierarchical Precision, Recall, and F-score [15]. Also, the ImageNet
ILSVRC2010 competition [11][6] used the depth of WordNet’s LCS between the
predicted and ground-truth label. However, these metrics give partial credit for
predictions that are not on the correct IS-A ancestral path of the ground truth.
We instead propose a new collection of hierarchical metrics to more precisely
and strictly measure various important aspects of the tree-based labeling pro-
cess. In all cases, we assign no credit for a prediction off the tree path of the
ground-truth. The metrics are divided into two categories related to the change
in originally correct (C) and originally incorrect (IC) base predictions:

– C-Persist is the fraction of predictions in the set Sc (initially correct predictions of
the base classifier) that do not change: C-Persist = 1

|Sc|
∑

i∈Sc
is-terminal(li),

where the logical is-terminal(li) is 1 (TRUE) if li is a member of the original
terminal label set, else it is 0 (FALSE). Higher proportions are desired.

– C-Withdrawn is the fraction of initially correct predictions assigned to the root
‘Unknown’: C-withdrawn = 1

|Sc|
∑

i∈Sc
is-root(li), where is-root(li) is 1 (TRUE)

if the label is assigned to the root ‘Unknown’ node. Lower proportions are desired.
– C-Soften is the fraction of originally correct terminal predictions that were gen-

eralized to a valid (non-root) non-terminal label: C-Soften = 1 - (C-Persist +
C-Withdrawn). More softened than withdrawn predictions is desired.

– C-SoftDepth (of C-Soften) is the ratio of the tree depth between a softened
label and its ground-truth, averaged over all softened labels. Larger proportions
close to 1 are desired (closer to the terminal) and smaller values signify more
generalization toward the root.

– IC-Remain is the fraction of set Sic (initially incorrect predictions) that remain
at an incorrect, non-root label: IC-Remain = 1

|Sic|
∑

i∈Sic
¬is-subsumer(li, gti)

∧¬is-root(li), where is-subsumer(li, gti) is 1 (TRUE) if label li is an ancestor of
its ground-truth label gti. Lower proportions are desired.

– IC-Withdrawn is the fraction of initially incorrect predictions assigned to the
root ‘Unknown’: IC-withdrawn = 1

|Sic|
∑

i∈Sic
is-root(li). Lower proportions
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are desired, but as these predictions were originally incorrect, a large withdrawal
is possible.

– IC-Reform is the fraction of initially incorrect predictions that are generalized
to a correct, non-root label: IC-Reform = 1 - (IC-Remain + IC-Withdrawn).
Larger proportions are desired.

– IC-RefDepth (of IC-Reform) is the ratio of the tree depth between a reformed
label and its deepest possible corrected label, averaged over the set of all reformed
labels Sic→c: IC-ReformDepth = 1

|Sic→c|
∑

i∈Sic→c
depth(li)/depth(l∗i ), where

l∗i is the LCS of the original prediction and its ground-truth. Larger proportions
close to 1 are desired.

4 Experiments

To evaluate the framework, we employed a synthetic classification dataset and
multiple standard datasets with existing prediction models for semantic seg-
mentation and image classification. For semantic segmentation, we examined
the PASCAL VOC 2012 dataset [3] with DeepLabv3+ [2] and the ADE20K
Scene Parsing dataset [1][16] with UperNet-101 [14]. The ImageNet ILSVRC
2012 dataset [11][7] with ResNet-152 [5] was used for image classification. All
pre-trained prediction models are publicly available. In all experiments, we pass
a single image through the model (with no additional scales or crops) to produce
the base classification.

Many existing pre-trained models have been constructed using the entire
training set, without properly using (or reporting) a validation hold-out set dur-
ing the training procedure. The official validation set is commonly treated as
a test set, due to unavailability of ground-truth for the actual test set. As our
approach is based on the use of a validation set to properly estimate the con-
cept tree posteriors, we therefore need to separate out a pseudo-validation and
psuedo-test set from the official validation set. Rather than using a single ran-
dom split, we instead employed a standard N-fold cross-validation approach. In
all experiments with the real datasets, we randomly divide the validation set
into N=3 partitions, then repeatedly model the posteriors on 2 partitions and
test on the remaining partition. Hence, it is not straightforward to compare with
other reported results (other than results of the base classifiers employed), and
we therefore present average scores for the newly defined metrics.

4.1 Synthetic Experiment

We created a simple synthetic dataset to illustrate the basics of the approach.
Three terminal classes (A, B, C) were each assigned 100 examples (equal priors).
A tree was defined by merging terminals B and C into non-terminal D, and
merging A and D into the root (‘Unknown’). We set the softmax vectors for the
ground-truth examples for class A all to [.8, .1, .1], for class B evenly split to
{[.1, .5, .4], [.1, .4, .5]}, and for class C evenly split to {[.1, .4, .5], [.1, .5, .4]}. With
the argmax as the base classification, the accuracies of A, B, and C are 100%,
50%, and 50%, respectively, simulating a strong confusion between B and C.
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Table 1. Hierarchical metric scores for synthetic data within two confidence ranges.

Confidence
≤50% >50%

C-Persist 1 .5
C-Withdrawn 0 0
C-Soften 0 .5
C-SoftDepth – .5

IC-Remain 1 0
IC-Withdrawn 0 0
IC-Reform 0 1
IC-RefDepth – 1

% Valid (¬root) 100 100
% Correct 66.7 100

Initially, the data are used to estimate the posterior distribution for each
node (A, B, C, D), as outlined in Sect. 3.3. For class A, this results in a simple
posterior with P (A|sA = .8) = 1 and P (A|sA 6= .8) = 0. For class B, we
have P (B|sB = {.4, .5}) = .5 and P (B|sB 6= {.4, .5}) = 0. Similarly, for class
C, P (C|sC = {.4, .5}) = .5 and P (C|sC 6= {.4, .5}) = 0. For non-terminal D,
P (D|sD = .4 + .5 = .9) = 1 and P (D|sD 6= .9) = 0. The inference stage
begins with the argmax classification results (no cross-validation is used in this
experiment) which are then generalized as needed given a confidence threshold.
For this example, we employed the same synthetic data for testing as to confirm
the expected behavior. We report the results in Table 1.

With any confidence threshold ≤50%, the approach is equivalent to the base
classification result (i.e., no classifications change). As given in the left confidence
column (≤50%) in Table 1, C-Persist=1 shows all correct argmax predictions
remained at their respective terminal nodes (thus C-Soften = C-Withdrawn
= 0) and IC-Remain=1 denotes all incorrect predictions remained unchanged
(thus IC-Reform = IC-Withdrawn = 0). Overall, every classification is a
valid (non-root) label and two-thirds of them (66.7%) are correct.

With any confidence threshold >50% (right column of Table 1), all cor-
rect/incorrect classifications of B and C are generalized to D, while all of A re-
main at the correct terminal node. Hence, C-Persist = .5 (i.e., 100/(100+50+50)).
Since half of B and C were originally correctly classified, but generalized to D,
the value of C-Soften = .5 (i.e., (50+50)/(100+50+50)). The average softening
depth C-SoftDepth = .5 reflects that those softened are halfway down the tree
branch to the correct terminal. In this threshold range, all originally incorrect
predictions for B and C are now at D (a correct label), hence IC-Reform =
1 (i.e., (50+50)/(50+50)). As all reformed labels are at their deepest correct
label possible, IC-RefDepth = 1. There are no remaining incorrect predictions
(IC-Remain=0). No labels were withdrawn to the root. In this example, the
original accuracy of 66.7% (from the base classifier) was increased to 100% when
the confidence is selected to be >50%.
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(a) PASCAL VOC2012

(b) ImageNet2012-Animal

(c) ADE20K Scene Parse

Fig. 1. Concept trees. Default root node (‘Unknown’) is not shown. Values in paren-
theses denote number of terminals.

4.2 PASCAL VOC2012/DeepLabv3+

In this experiment the PASCAL VOC2012 dataset [3] and Google’s DeepLabv3+
[2] pretrained model were employed. The limited VOC2012 dataset was extended
with the standard trainaug labelings [13]. We ignored all ‘background’ and ‘void’
pixels as these unused pixels do not adhere to a semantic hierarchy. All estima-
tion/inference and evaluation procedures are based on the valid 20 object labels
by removing DeepLab’s output logits for the unused labels and performing soft-
max on the remaining logits. We made the following label changes for use with
WordNet: ‘aeroplane’ → ‘airplane’, ‘motorbike’ → ‘motorcycle’, ‘tv/monitor’ →
‘television monitor’, and ‘potted plant’ → ‘pot plant’. All labels were bound to
the default WordNet noun definition (n.01).

The automatically generated concept tree using the technique in Sect. 3.1
is shown in Fig. 1(a), which depicts a natural and meaningful hierarchy of la-
bels. We computed the average hierarchical metrics using cross-validation on
the resulting labelings given by our approach using priors learned from training
data. A 0% confidence threshold returns the original base classification results
of 97.0% accuracy (C-Persist = IC-Remain = 1). Table 2 (left) presents the
average results for multiple increasing confidences. Both C-Persist and IC-
Remain monotonically decrease, while C-Withdrawn and IC-Withdrawn
monotonically increase (softening is based on their relative rates of change). At
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Table 2. Hierarchical metric scores for multiple confidence thresholds across datasets.

VOC2012 ImageNet-Animal ADE20K

Confidence: Confidence: Confidence:
50% 75% 90% 95% 99% 50% 75% 90% 95% 99% 50% 75% 90% 95% 99%

C-Persist .996 .979 .923 .911 .808 .853 .762 .669 .640 .620 .935 .838 .493 .126 .004
C-Withdrawn .000 .004 .014 .017 .017 .001 .003 .007 .010 .039 .004 .013 .021 .021 .021
C-Soften .003 .017 .063 .072 .174 .146 .235 .324 .349 .341 .061 .149 .487 .853 .975
C-SoftDepth .703 .610 .692 .703 .480 .766 .765 .749 .728 .670 .766 .663 .767 .645 .439

IC-Remain .924 .616 .365 .284 .205 .598 .408 .290 .267 .235 .764 .457 .325 .121 .063
IC-Withdrawn .009 .096 .202 .227 .228 .010 .024 .041 .052 .142 .033 .062 .101 .102 .102
IC-Reform .067 .287 .433 .489 .567 .393 .568 .669 .680 .624 .204 .482 .573 .777 .835
IC-RefDepth .992 .968 .978 .981 .650 .976 .964 .936 .910 .842 .987 .941 .943 .890 .619

% Valid (¬root) 99.9 99.3 98.1 97.7 97.6 99.8 99.4 98.8 98.3 94.6 99.0 97.8 96.4 96.3 96.3
% Correct 97.2 98.1 98.8 99.1 99.3 91.0 93.8 95.6 95.9 96.3 84.8 90.8 93.3 97.5 98.7

(a) RGB (b) Ground-truth (c) Base prediction (d) Confident prediction

Fig. 2. VOC2012 example result. (a) RGB image. (b) Ground-truth labeling. (c) Base
prediction with ‘chair’/‘sofa’ errors, and (d) Softening and reforming of ‘chair’ and
‘sofa’ to ‘Seat’ at 95% confidence.

higher confidences, approximately 50% of the incorrect examples were corrected.
The bottom two rows in Table 2 show that nearly all of the classifications were
retained (small overall withdrawal) and that a very high percentage of them are
now correct. Depending on the dataset, at 100% confidence all labels may be set
to ‘Unknown’ (as happens here) or some non-root labels may still be selected.

An image containing the highly confusable ground-truth labels ‘chair’ and
‘sofa’ is shown in Fig. 2(a) and its ground-truth in Fig. 2(b). The DeepLab base
prediction mistakenly labels most of one chair region as ‘sofa’ (see Fig. 2(c)).
At a 95% confidence threshold our approach reasonably generalizes (softens and
reforms) both chair regions to ‘Seat’ (see Fig. 2(d)). We note that pixels on object
borders (removed in VOC2012) in most images are typically weakly predicted by
a base classifier and are thus highly generalized by our approach. Furthermore,
some regions may be composed of both specific and generalized labels. Additional
post-processing of the final labeled image is the subject of future work.

To examine the effect of the tree itself, we employed the same tree structure
but randomly shuffled the bottom 20 terminal labels. The hierarchical metrics
were collected at 95% confidence and shown in the leftmost results of Table
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Table 3. Additional results at 95% confidence with normal vs. randomized/shuffled
tree, posterior (w/ equal priors) vs. softmax confidence, and learned vs. equal priors.

PASCAL VOC2012 ImageNet-Animal ADE20K

Normal Shuffled Posterior SoftMax Learned Equal

C-Persist .911 .911 .640 .178 .126 .041
C-Withdrawn .017 .026 .010 .256 .021 .020
C-Soften .072 .063 .349 .566 .853 .939
C-SoftDepth .703 .557 .728 .370 .645 .653

IC-Remain .284 .379 .267 .051 .121 .152
IC-Withdrawn .227 .415 .052 .450 .102 .100
IC-Reform .489 .206 .680 .499 .777 .748
IC-RefDepth .981 .984 .910 .494 .890 .918

% Valid (¬root) 97.7 96.3 98.3 71.5 96.3 96.4
% Correct 99.1 98.8 95.9 98.9 97.5 96.9

(a) Softened to ‘Snake’ (b) Withdrawn (c) Reformed to ‘Canine’

Fig. 3. ImageNet-Animal inference results at 95% confidence. (a) C-Soften: ‘vine
snake’ → ‘Snake’. (b) IC-Withdrawn: ‘conch’ → ‘Unknown’ (truth: ‘chiton’). (c)
IC-Reform: ‘timber wolf’ → ‘Canine’ (truth: ‘white wolf’, direct child of ‘Canine’).

3. As expected, C-Persist was unchanged, C/IC-Withdrawn increased, and
IC-Reform significantly decreased. The use of the meaningless tree structure
(for the shuffled terminals) clearly shows degraded performance.

4.3 ImageNet-Animal/ResNet-152

For this experiment, we focused on the subset of 398 animal types within the
larger ImageNet ILSVRC 2012 dataset [11][7]. Microsoft’s ResNet-152 [5] pre-
trained model was used to give the base predictions, where all non-animal classes
were removed from the output logits before computing the softmax. All animal
labels were bound to their default WordNet noun definition (n.01), except for 25
labels that needed to be specified as the animal meaning (e.g., the dog ‘boxer’ is
n.04). During the generation of the concept tree, we removed any non-terminal
labels/nodes having less than 10 terminal descendants to give the more compact
tree shown in Fig. 1(b).

Table 2 (middle) presents the average results using cross-validation with equal
priors. The base classifier (0% confidence) has an accuracy of 85.0%, and we see
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that even at 50% confidence nearly all (99.8%) of the labels remain valid (non-
root) and that 91% of them are correct. At higher confidences, more than 60%
of the incorrect examples were reformed/corrected. A few example images are
shown in Fig. 3. Notably, the withdrawn example is not clearly, or singularly,
distinguished (it is a chiton on top of a mollusk) and the reformed image is
relabeled more generally, yet correctly, as ‘Canine’ for the wolf confusion.

We also compared our posterior confidence to a baseline method directly us-
ing the softmax value as the confidence. Results at a 95% confidence threshold are
presented in Table 3 (middle) and show that using softmax values alone produce
much worse results, with a dramatically reduced C-Persist and IC-Reform.
Testing with different thresholds on the softmax values could potentially improve
these results, but would no longer be representative of a meaningful confidence
measure. These results further reinforce the uncalibrated nature of softmax val-
ues, as described in [4].

4.4 ADE20K/UperNet-101

The ADE20K Scene Parsing Benchmark [1][16] contains natural images with 150
semantic labels. The particular WordNet synset definition (n.xx) was determined
from the provided label information. Twenty labels were not uniquely matched
and were manually assigned. The following label changes were made: ‘water’ →
‘body of water’, ‘kitchen island’→ ‘kitchen table’, and ‘arcade machine’→ ‘slot
machine’ to better map to the WordNet concepts and hierarchy. The resulting
concept tree with a constraint of at least 5 terminals associated with each non-
terminal is shown in Fig. 1(c).

The UperNet-101 [14] pre-trained model was used as the base classifier, which
produced an initial (0% confidence) accuracy of 80.3%. The hierarchical metrics
with cross-validation and priors learned from training data are shown in Table
2 (right). We see a similar trend as in the previous experiments, but with much
weaker scores at higher confidence (≥ 90%). The small C-Persist values at high
confidences can be explained by the fact that most terminal nodes have weak
posteriors. For example, at 95% confidence the majority (81%) of terminal nodes
cannot reach the confidence threshold (at any softmax value). In comparison,
the learned posteriors for VOC2012 and ImageNet-Animal have only 10% and
2%, respectively, of terminals not able to meet the 95% threshold. Thus the
UperNet-101 base classifier is not strongly confident in many cases.

We also compared the use of learned (from training data) vs. equal priors in
the posterior calculation. Results at a 95% confidence threshold are presented
in Table 3 (right) and show the preference for learned priors, as particularly
reflected in C-Persist and IC-Reform. The difference is even more pronounced
at lower confidence due to the constrained posterior values in this dataset.

5 Summary

We presented an approach that provides a useful alternative to forced-choice
classification when the labels have semantically meaningful relationships that can
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be hierarchically organized. Instead of removing unconfident labels, the approach
attempts to produce more generalized and informative labels when possible.
When a label is encountered that cannot meet the required confidence at any
generalization, the label is withdrawn from classification.

We outlined a bottom-up label generalization method based on WordNet to
create a semantic concept tree. A Bayesian posterior confidence employing clas-
sifier softmax predictions is used to determine the level of label generalization. A
separate estimation and inference process was outlined that is applicable to any
base classifier producing semantic labels with logit/softmax scores. Results with
multiple synthetic and real datasets demonstrated the ability to correct many
errors while only mildly generalizing correctly predicted labels. The approach
can be widely used with a variety of existing models and tasks to provide high
confidence predictions with informative, semantic labels.
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